4kfq

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 2: Line 2:
<StructureSection load='4kfq' size='340' side='right' caption='[[4kfq]], [[Resolution|resolution]] 2.20&Aring;' scene=''>
<StructureSection load='4kfq' size='340' side='right' caption='[[4kfq]], [[Resolution|resolution]] 2.20&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
-
<table><tr><td colspan='2'>[[4kfq]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Rattus_norvegicus Rattus norvegicus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4KFQ OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4KFQ FirstGlance]. <br>
+
<table><tr><td colspan='2'>[[4kfq]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Buffalo_rat Buffalo rat]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4KFQ OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4KFQ FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=KFQ:1-SULFANYL[1,2,4]TRIAZOLO[4,3-A]QUINOXALIN-4(5H)-ONE'>KFQ</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=KFQ:1-SULFANYL[1,2,4]TRIAZOLO[4,3-A]QUINOXALIN-4(5H)-ONE'>KFQ</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr>
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1pbq|1pbq]], [[1pb7|1pb7]], [[1pb8|1pb8]], [[1pb9|1pb9]]</td></tr>
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1pbq|1pbq]], [[1pb7|1pb7]], [[1pb8|1pb8]], [[1pb9|1pb9]]</td></tr>
-
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">Grin1, GRIN1 OR NMDAR1, Nmdar1 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=10116 Rattus norvegicus])</td></tr>
+
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">Grin1, GRIN1 OR NMDAR1, Nmdar1 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=10116 Buffalo rat])</td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4kfq FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4kfq OCA], [http://www.rcsb.org/pdb/explore.do?structureId=4kfq RCSB], [http://www.ebi.ac.uk/pdbsum/4kfq PDBsum]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4kfq FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4kfq OCA], [http://www.rcsb.org/pdb/explore.do?structureId=4kfq RCSB], [http://www.ebi.ac.uk/pdbsum/4kfq PDBsum]</span></td></tr>
</table>
</table>
Line 12: Line 12:
<div style="background-color:#fffaf0;">
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
== Publication Abstract from PubMed ==
-
Excitatory neurotransmission mediated by the N-methyl-D-aspartate subtype of ionotropic glutamate receptors is fundamental to the development and function of the mammalian central nervous system. NMDA receptors require both glycine and glutamate for activation with NR1 and NR2 forming glycine and glutamate sites, respectively. Mechanisms to describe agonist and antagonist binding, and activation and desensitization of NMDA receptors have been hampered by the lack of high-resolution structures. Here, we describe the cocrystal structures of the NR1 S1S2 ligand-binding core with the agonists glycine and D-serine (DS), the partial agonist D-cycloserine (DCS) and the antagonist 5,7-dichlorokynurenic acid (DCKA). The cleft of the S1S2 'clamshell' is open in the presence of the antagonist DCKA and closed in the glycine, DS and DCS complexes. In addition, the NR1 S1S2 structure reveals the fold and interactions of loop 1, a cysteine-rich region implicated in intersubunit allostery.
+
NMDA receptors are ligand-gated ion channels that mediate excitatory neurotransmission in the brain. They are tetrameric complexes composed of glycine-binding GluN1 and GluN3 subunits together with glutamate-binding GluN2 subunits. Subunit-selective antagonists that discriminate between the glycine sites of GluN1 and GluN3 subunits would be valuable pharmacological tools for studies on the function and physiological roles of NMDA receptor subtypes. In a virtual screening for antagonists that exploit differences in the orthosteric binding site of GluN1 and GluN3 subunits, we identified a novel glycine site antagonist, 1-thioxo-1,2-dihydro-[1,2,4]triazolo[4,3-a]quinoxalin-4(5H)-one (TK40). Here, we show by Schild analysis that TK40 is a potent competitive antagonist with Kb values of 21-63 nM at the GluN1 glycine-binding site of the four recombinant GluN1/N2A-D receptors. In addition, TK40 displayed &gt;100-fold selectivity for GluN1/N2 NMDA receptors over GluN3A- and GluN3B-containing NMDA receptors and no appreciable effects at AMPA receptors. Binding experiments on rat brain membranes and the purified GluN1 ligand-binding domain using glycine site GluN1 radioligands further confirmed the competitive interaction and high potency. To delineate the binding mechanism, we have solved the crystal structure of the GluN1 ligand-binding domain in complex with TK40 and show that TK40 binds to the orthosteric binding site of the GluN1 subunit with a binding mode that was also predicted by virtual screening. Furthermore, the structure reveals that the imino acetamido group of TK40 acts as an alpha-amino acid bioisostere, which could be of importance in bioisosteric replacement strategies for future ligand design.
-
Mechanisms of activation, inhibition and specificity: crystal structures of the NMDA receptor NR1 ligand-binding core.,Furukawa H, Gouaux E EMBO J. 2003 Jun 16;22(12):2873-85. PMID:12805203<ref>PMID:12805203</ref>
+
Crystal structure and pharmacological characterization of a novel N-methyl-D-aspartate (NMDA) receptor antagonist at the GluN1 glycine binding site.,Kvist T, Steffensen TB, Greenwood JR, Mehrzad Tabrizi F, Hansen KB, Gajhede M, Pickering DS, Traynelis SF, Kastrup JS, Brauner-Osborne H J Biol Chem. 2013 Nov 15;288(46):33124-35. doi: 10.1074/jbc.M113.480210. Epub, 2013 Sep 26. PMID:24072709<ref>PMID:24072709</ref>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
Line 25: Line 25:
__TOC__
__TOC__
</StructureSection>
</StructureSection>
-
[[Category: Rattus norvegicus]]
+
[[Category: Buffalo rat]]
[[Category: Gajhede, M]]
[[Category: Gajhede, M]]
[[Category: Kastrup, J S]]
[[Category: Kastrup, J S]]

Revision as of 12:12, 1 July 2015

Crystal structure of the NMDA receptor GluN1 ligand binding domain in complex with 1-thioxo-1,2-dihydro-[1,2,4]triazolo[4,3-a]quinoxalin-4(5H)-one

4kfq, resolution 2.20Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools