4q93

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 12: Line 12:
== Function ==
== Function ==
[[http://www.uniprot.org/uniprot/SYYC_HUMAN SYYC_HUMAN]] Catalyzes the attachment of tyrosine to tRNA(Tyr) in a two-step reaction: tyrosine is first activated by ATP to form Tyr-AMP and then transferred to the acceptor end of tRNA(Tyr) (By similarity).
[[http://www.uniprot.org/uniprot/SYYC_HUMAN SYYC_HUMAN]] Catalyzes the attachment of tyrosine to tRNA(Tyr) in a two-step reaction: tyrosine is first activated by ATP to form Tyr-AMP and then transferred to the acceptor end of tRNA(Tyr) (By similarity).
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
Resveratrol is reported to extend lifespan and provide cardio-neuro-protective, anti-diabetic, and anti-cancer effects by initiating a stress response that induces survival genes. Because human tyrosyl transfer-RNA (tRNA) synthetase (TyrRS) translocates to the nucleus under stress conditions, we considered the possibility that the tyrosine-like phenolic ring of resveratrol might fit into the active site pocket to effect a nuclear role. Here we present a 2.1 A co-crystal structure of resveratrol bound to the active site of TyrRS. Resveratrol nullifies the catalytic activity and redirects TyrRS to a nuclear function, stimulating NAD+-dependent auto-poly-ADP-ribosylation of poly(ADP-ribose) polymerase 1 (PARP1). Downstream activation of key stress signalling pathways are causally connected to TyrRS-PARP1-NAD+ collaboration. This collaboration is also demonstrated in the mouse, and is specifically blocked in vivo by a resveratrol-displacing tyrosyl adenylate analogue. In contrast to functionally diverse tRNA synthetase catalytic nulls created by alternative splicing events that ablate active sites, here a non-spliced TyrRS catalytic null reveals a new PARP1- and NAD+-dependent dimension to the physiological mechanism of resveratrol.
 +
 +
A human tRNA synthetase is a potent PARP1-activating effector target for resveratrol.,Sajish M, Schimmel P Nature. 2014 Dec 22. doi: 10.1038/nature14028. PMID:25533949<ref>PMID:25533949</ref>
 +
 +
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 +
</div>
== References ==
== References ==
<references/>
<references/>

Revision as of 08:27, 14 January 2015

Crystal structure of resveratrol bound human tyrosyl tRNA synthetase

4q93, resolution 2.10Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools