2bgf
From Proteopedia
Line 7: | Line 7: | ||
|ACTIVITY= | |ACTIVITY= | ||
|GENE= | |GENE= | ||
+ | |DOMAIN= | ||
+ | |RELATEDENTRY= | ||
+ | |RESOURCES=<span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2bgf FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2bgf OCA], [http://www.ebi.ac.uk/pdbsum/2bgf PDBsum], [http://www.rcsb.org/pdb/explore.do?structureId=2bgf RCSB]</span> | ||
}} | }} | ||
Line 14: | Line 17: | ||
==Overview== | ==Overview== | ||
When classical, Nuclear Overhauser Effect (NOE)-based approaches fail, it is possible, given high-resolution structures of the free molecules, to model the structure of a complex in solution based solely on chemical shift perturbation (CSP) data in combination with orientational restraints from residual dipolar couplings (RDCs) when available. RDCs can be incorporated into the docking following various strategies: as direct restraints and/or as intermolecular intervector projection angle restraints (Meiler et al., J Biomol NMR 2000;16:245-252). The advantage of the latter for docking is that they directly define the relative orientation of the molecules. A combined protocol in which RDCs are first introduced as intervector projection angle restraints and at a later stage as direct restraints is shown here to give the best performance. This approach, implemented in our information-driven docking approach HADDOCK (Dominguez et al., J Am Chem Soc 2003;125:1731-1737), is used to determine the solution structure of the Lys48-linked di-ubiquitin, for which chemical shift mapping, RDCs, and (15)N-relaxation data have been previously obtained (Varadan et al., J Mol Biol 2002;324:637-647). The resulting structures, derived from CSP and RDC data, are cross-validated using (15)N-relaxation data. The solution structure differs from the crystal structure by a 20 degrees rotation of the two ubiquitin units relative to each other. | When classical, Nuclear Overhauser Effect (NOE)-based approaches fail, it is possible, given high-resolution structures of the free molecules, to model the structure of a complex in solution based solely on chemical shift perturbation (CSP) data in combination with orientational restraints from residual dipolar couplings (RDCs) when available. RDCs can be incorporated into the docking following various strategies: as direct restraints and/or as intermolecular intervector projection angle restraints (Meiler et al., J Biomol NMR 2000;16:245-252). The advantage of the latter for docking is that they directly define the relative orientation of the molecules. A combined protocol in which RDCs are first introduced as intervector projection angle restraints and at a later stage as direct restraints is shown here to give the best performance. This approach, implemented in our information-driven docking approach HADDOCK (Dominguez et al., J Am Chem Soc 2003;125:1731-1737), is used to determine the solution structure of the Lys48-linked di-ubiquitin, for which chemical shift mapping, RDCs, and (15)N-relaxation data have been previously obtained (Varadan et al., J Mol Biol 2002;324:637-647). The resulting structures, derived from CSP and RDC data, are cross-validated using (15)N-relaxation data. The solution structure differs from the crystal structure by a 20 degrees rotation of the two ubiquitin units relative to each other. | ||
- | |||
- | ==Disease== | ||
- | Known disease associated with this structure: Cleft palate, isolated OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=191339 191339]] | ||
==About this Structure== | ==About this Structure== | ||
Line 33: | Line 33: | ||
[[Category: ubiquitin]] | [[Category: ubiquitin]] | ||
- | ''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on | + | ''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Mon Mar 31 02:05:59 2008'' |
Revision as of 23:06, 30 March 2008
| |||||||
Resources: | FirstGlance, OCA, PDBsum, RCSB | ||||||
Coordinates: | save as pdb, mmCIF, xml |
NMR STRUCTURE OF LYS48-LINKED DI-UBIQUITIN USING CHEMICAL SHIFT PERTURBATION DATA TOGETHER WITH RDCS AND 15N-RELAXATION DATA
Overview
When classical, Nuclear Overhauser Effect (NOE)-based approaches fail, it is possible, given high-resolution structures of the free molecules, to model the structure of a complex in solution based solely on chemical shift perturbation (CSP) data in combination with orientational restraints from residual dipolar couplings (RDCs) when available. RDCs can be incorporated into the docking following various strategies: as direct restraints and/or as intermolecular intervector projection angle restraints (Meiler et al., J Biomol NMR 2000;16:245-252). The advantage of the latter for docking is that they directly define the relative orientation of the molecules. A combined protocol in which RDCs are first introduced as intervector projection angle restraints and at a later stage as direct restraints is shown here to give the best performance. This approach, implemented in our information-driven docking approach HADDOCK (Dominguez et al., J Am Chem Soc 2003;125:1731-1737), is used to determine the solution structure of the Lys48-linked di-ubiquitin, for which chemical shift mapping, RDCs, and (15)N-relaxation data have been previously obtained (Varadan et al., J Mol Biol 2002;324:637-647). The resulting structures, derived from CSP and RDC data, are cross-validated using (15)N-relaxation data. The solution structure differs from the crystal structure by a 20 degrees rotation of the two ubiquitin units relative to each other.
About this Structure
2BGF is a Single protein structure of sequence from Homo sapiens. Full crystallographic information is available from OCA.
Reference
Various strategies of using residual dipolar couplings in NMR-driven protein docking: application to Lys48-linked di-ubiquitin and validation against 15N-relaxation data., van Dijk AD, Fushman D, Bonvin AM, Proteins. 2005 Aug 15;60(3):367-81. PMID:15937902
Page seeded by OCA on Mon Mar 31 02:05:59 2008