4rnd
From Proteopedia
(Difference between revisions)
Line 11: | Line 11: | ||
<div style="background-color:#fffaf0;"> | <div style="background-color:#fffaf0;"> | ||
== Publication Abstract from PubMed == | == Publication Abstract from PubMed == | ||
- | + | Eukaryotic V1VO-ATPases hydrolyze ATP in the V1 domain coupled to ion pumping in VO. A unique mode of regulation of V-ATPases is the reversible disassembly of V1 and VO, which reduces ATPase activity and causes silencing of ion conduction. The subunits D and F are proposed to be key in these enzymatic processes. Here, we describe the structures of two conformations of the subunit DF assembly of Saccharomyces cerevisiae (ScDF) V-ATPase at 3.1 A resolution. Subunit D (ScD) consists of a long pair of alpha-helices connected by a short helix ((79)IGYQVQE(85)) as well as a beta-hairpin region, which is flanked by two flexible loops. The long pair of helices is composed of the N-terminal alpha-helix and the C-terminal helix, showing structural alterations in the two ScDF structures. The entire subunit F (ScF) consists of an N-terminal domain of four beta-strands (beta1-beta4) connected by four alpha-helices (alpha1-alpha4). alpha1 and beta2 are connected via the loop (26)GQITPETQEK(35), which is unique in eukaryotic V-ATPases. Adjacent to the N-terminal domain is a flexible loop, followed by a C-terminal alpha-helix (alpha5). A perpendicular and extended conformation of helix alpha5 was observed in the two crystal structures and in solution x-ray scattering experiments, respectively. Fitted into the nucleotide-bound A3B3 structure of the related A-ATP synthase from Enterococcus hirae, the arrangements of the ScDF molecules reflect their central function in ATPase-coupled ion conduction. Furthermore, the flexibility of the terminal helices of both subunits as well as the loop (26)GQITPETQEK(35) provides information about the regulatory step of reversible V1VO disassembly. | |
- | Crystal and | + | Crystal Structure of Subunits D and F in Complex Gives Insight into Energy Transmission of the Eukaryotic V-ATPase from Saccharomyces cerevisiae.,Balakrishna AM, Basak S, Manimekalai MS, Gruber G J Biol Chem. 2015 Feb 6;290(6):3183-96. doi: 10.1074/jbc.M114.622688. Epub 2014, Dec 12. PMID:25505269<ref>PMID:25505269</ref> |
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
</div> | </div> | ||
+ | |||
+ | ==See Also== | ||
+ | *[[ATPase|ATPase]] | ||
== References == | == References == | ||
<references/> | <references/> |
Revision as of 08:04, 25 February 2015
Crystal Structure of the subunit DF-assembly of the eukaryotic V-ATPase.
|