|  |  | 
		| Line 1: | Line 1: | 
|  | + |  | 
|  | ==Crystal structure of the GEF domain of DrrA/SidM from Legionella pneumophila== |  | ==Crystal structure of the GEF domain of DrrA/SidM from Legionella pneumophila== | 
|  | <StructureSection load='3jz9' size='340' side='right' caption='[[3jz9]], [[Resolution|resolution]] 1.80Å' scene=''> |  | <StructureSection load='3jz9' size='340' side='right' caption='[[3jz9]], [[Resolution|resolution]] 1.80Å' scene=''> | 
|  | == Structural highlights == |  | == Structural highlights == | 
| - | <table><tr><td colspan='2'>[[3jz9]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Legionella_pneumophila_subsp._pneumophila_str._philadelphia_1 Legionella pneumophila subsp. pneumophila str. philadelphia 1]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3JZ9 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3JZ9 FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[3jz9]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Legph Legph]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3JZ9 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3JZ9 FirstGlance]. <br> | 
|  | </td></tr><tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=MSE:SELENOMETHIONINE'>MSE</scene></td></tr> |  | </td></tr><tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=MSE:SELENOMETHIONINE'>MSE</scene></td></tr> | 
|  | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[3jza|3jza]]</td></tr> |  | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[3jza|3jza]]</td></tr> | 
| - | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">lpg2464 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=272624 Legionella pneumophila subsp. pneumophila str. Philadelphia 1])</td></tr> | + | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">lpg2464 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=272624 LEGPH])</td></tr> | 
| - | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3jz9 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3jz9 OCA], [http://www.rcsb.org/pdb/explore.do?structureId=3jz9 RCSB], [http://www.ebi.ac.uk/pdbsum/3jz9 PDBsum]</span></td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3jz9 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3jz9 OCA], [http://pdbe.org/3jz9 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=3jz9 RCSB], [http://www.ebi.ac.uk/pdbsum/3jz9 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=3jz9 ProSAT]</span></td></tr> | 
|  | </table> |  | </table> | 
|  | == Function == |  | == Function == | 
| - | [[http://www.uniprot.org/uniprot/Q5ZSQ3_LEGPH Q5ZSQ3_LEGPH]] Virulence effector that plays a key role in hijacking the host vesicular trafficking by recruiting the small guanosine triphosphatase (GTPase) Rab1 to the cytosolic face of the Legionella-containing vacuole (LCVs). Acts as a GDP-GTP exchange factor (GEF) for the small GTPase Rab1 (RAB1A, RAB1B or RAB1C), thereby converting Rab1 to an active GTP-bound state, leading to the incorporation of Rab1 into LCVs. Also shows RabGDI displacement factor (GDF) activity; however, this probably represents a passive activity following the GEF activity. Also acts as an adenylyltransferase by mediating the addition of adenosine 5'-monophosphate (AMP) to 'Tyr-77' of host RAB1B, thereby rendering RAB1B constitutively active. Also has adenylyltransferase activity towards Rab6 and Rab35. Also displays guanylyltransferase activity by mediating the addition of guanosine 5'-monophosphate (GMP) to host RAB1B in vitro; however such activity remains uncertain in vivo. Specifically binds phosphatidylinositol 4-phosphate (PtdIns(4)P) lipids on the cytosolic surface of the phagosomal membrane shortly after infection.<ref>PMID:16824952</ref> <ref>PMID:17947549</ref> <ref>PMID:21822290</ref> <ref>PMID:20064470</ref> <ref>PMID:19942850</ref> <ref>PMID:20176951</ref> | + | [[http://www.uniprot.org/uniprot/DRRA_LEGPH DRRA_LEGPH]] Virulence effector that plays a key role in hijacking the host vesicular trafficking by recruiting the small guanosine triphosphatase (GTPase) Rab1 to the cytosolic face of the Legionella-containing vacuole (LCVs). Acts as a GDP-GTP exchange factor (GEF) for the small GTPase Rab1 (RAB1A, RAB1B or RAB1C), thereby converting Rab1 to an active GTP-bound state, leading to the incorporation of Rab1 into LCVs. Also shows RabGDI displacement factor (GDF) activity; however, this probably represents a passive activity following the GEF activity. Also acts as an adenylyltransferase by mediating the addition of adenosine 5'-monophosphate (AMP) to 'Tyr-77' of host RAB1B, thereby rendering RAB1B constitutively active. Also has adenylyltransferase activity towards Rab6 and Rab35. Also displays guanylyltransferase activity by mediating the addition of guanosine 5'-monophosphate (GMP) to host RAB1B in vitro; however such activity remains uncertain in vivo. Specifically binds phosphatidylinositol 4-phosphate (PtdIns(4)P) lipids on the cytosolic surface of the phagosomal membrane shortly after infection.<ref>PMID:16824952</ref> <ref>PMID:17947549</ref> <ref>PMID:21822290</ref> <ref>PMID:20064470</ref> <ref>PMID:19942850</ref> <ref>PMID:20176951</ref>   | 
|  | <div style="background-color:#fffaf0;"> |  | <div style="background-color:#fffaf0;"> | 
|  | == Publication Abstract from PubMed == |  | == Publication Abstract from PubMed == | 
| Line 18: | Line 19: | 
|  | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> |  | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | 
|  | </div> |  | </div> | 
|  | + | <div class="pdbe-citations 3jz9" style="background-color:#fffaf0;"></div> | 
|  | == References == |  | == References == | 
|  | <references/> |  | <references/> | 
|  | __TOC__ |  | __TOC__ | 
|  | </StructureSection> |  | </StructureSection> | 
| - | [[Category: Legionella pneumophila subsp. pneumophila str. philadelphia 1]] | + | [[Category: Legph]] | 
|  | [[Category: Blankenfeldt, W]] |  | [[Category: Blankenfeldt, W]] | 
|  | [[Category: Goody, R S]] |  | [[Category: Goody, R S]] | 
|  |   Structural highlights   Function [DRRA_LEGPH] Virulence effector that plays a key role in hijacking the host vesicular trafficking by recruiting the small guanosine triphosphatase (GTPase) Rab1 to the cytosolic face of the Legionella-containing vacuole (LCVs). Acts as a GDP-GTP exchange factor (GEF) for the small GTPase Rab1 (RAB1A, RAB1B or RAB1C), thereby converting Rab1 to an active GTP-bound state, leading to the incorporation of Rab1 into LCVs. Also shows RabGDI displacement factor (GDF) activity; however, this probably represents a passive activity following the GEF activity. Also acts as an adenylyltransferase by mediating the addition of adenosine 5'-monophosphate (AMP) to 'Tyr-77' of host RAB1B, thereby rendering RAB1B constitutively active. Also has adenylyltransferase activity towards Rab6 and Rab35. Also displays guanylyltransferase activity by mediating the addition of guanosine 5'-monophosphate (GMP) to host RAB1B in vitro; however such activity remains uncertain in vivo. Specifically binds phosphatidylinositol 4-phosphate (PtdIns(4)P) lipids on the cytosolic surface of the phagosomal membrane shortly after infection.[1] [2] [3] [4] [5] [6]  
 
  Publication Abstract from PubMed Prenylated Rab proteins exist in the cytosol as soluble, high-affinity complexes with GDI that need to be disrupted for membrane attachment and targeting of Rab proteins. The Legionella pneumophila protein DrrA displaces GDI from Rab1:GDI complexes, incorporating Rab1 into Legionella-containing vacuoles and activating Rab1 by exchanging GDP for GTP. Here, we present the crystal structure of a complex between the GEF domain of DrrA and Rab1 and a detailed kinetic analysis of this exchange. DrrA efficiently catalyzes nucleotide exchange and mimics the general nucleotide exchange mechanism of mammalian GEFs for Ras-like GTPases. We show that the GEF activity of DrrA is sufficient to displace prenylated Rab1 from the Rab1:GDI complex. Thus, apparent GDI displacement by DrrA is linked directly to nucleotide exchange, suggesting a basic model for GDI displacement and specificity of Rab localization that does not require discrete GDI displacement activity.
 RabGDI displacement by DrrA from Legionella is a consequence of its guanine nucleotide exchange activity.,Schoebel S, Oesterlin LK, Blankenfeldt W, Goody RS, Itzen A Mol Cell. 2009 Dec 25;36(6):1060-72. PMID:20064470[7]
 From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
   References ↑ Machner MP, Isberg RR. Targeting of host Rab GTPase function by the intravacuolar pathogen Legionella pneumophila. Dev Cell. 2006 Jul;11(1):47-56. PMID:16824952 doi:10.1016/j.devcel.2006.05.013↑ Machner MP, Isberg RR. A bifunctional bacterial protein links GDI displacement to Rab1 activation. Science. 2007 Nov 9;318(5852):974-7. Epub 2007 Oct 18. PMID:17947549↑ Mukherjee S, Liu X, Arasaki K, McDonough J, Galan JE, Roy CR. Modulation of Rab GTPase function by a protein phosphocholine transferase. Nature. 2011 Aug 7;477(7362):103-6. doi: 10.1038/nature10335. PMID:21822290 doi:10.1038/nature10335↑ Schoebel S, Oesterlin LK, Blankenfeldt W, Goody RS, Itzen A. RabGDI displacement by DrrA from Legionella is a consequence of its guanine nucleotide exchange activity. Mol Cell. 2009 Dec 25;36(6):1060-72. PMID:20064470 doi:10.1016/j.molcel.2009.11.014↑ Suh HY, Lee DW, Lee KH, Ku B, Choi SJ, Woo JS, Kim YG, Oh BH. Structural insights into the dual nucleotide exchange and GDI displacement activity of SidM/DrrA. EMBO J. 2010 Jan 20;29(2):496-504. Epub 2009 Nov 26. PMID:19942850 doi:10.1038/emboj.2009.347↑ Zhu Y, Hu L, Zhou Y, Yao Q, Liu L, Shao F. Structural mechanism of host Rab1 activation by the bifunctional Legionella type IV effector SidM/DrrA. Proc Natl Acad Sci U S A. 2010 Mar 9;107(10):4699-704. Epub 2010 Feb 22. PMID:20176951 doi:10.1073/pnas.0914231107↑ Schoebel S, Oesterlin LK, Blankenfeldt W, Goody RS, Itzen A. RabGDI displacement by DrrA from Legionella is a consequence of its guanine nucleotide exchange activity. Mol Cell. 2009 Dec 25;36(6):1060-72. PMID:20064470 doi:10.1016/j.molcel.2009.11.014
 
 |