Binding site of AChR
From Proteopedia
(Difference between revisions)
| Line 20: | Line 20: | ||
== Superimpose HAP on AChBP == | == Superimpose HAP on AChBP == | ||
| - | The crystal <scene name='68/688431/Binding_site_of_achr/1'>structure of Acetylcholine binding site</scene> shows it's a pentamer like the AChR molecule.which is obviously an ideal candidate for testing the relevance of the conformation of the HAP when bound to α-BTX, to that of the corresponding binding region in AChR | + | The crystal <scene name='68/688431/Binding_site_of_achr/1'>structure of Acetylcholine binding site</scene> shows it's a pentamer like the AChR molecule.which is obviously an ideal candidate for testing the relevance of the conformation of the HAP when bound to α-BTX, to that of the corresponding binding region in AChR. |
| - | α-BTX binds perpendicular to the 5-fold axis of the AChBP molecule and therefore, there are no steric hindrance limitations even when five toxin molecules bind to AChBP.The X-ray confirm that the major interaction between α-BTX and the HAP occur residues 187-192 of AchR α subunit. | + | α-BTX binds perpendicular to the 5-fold axis of the AChBP molecule and therefore, there are no steric hindrance limitations even when five toxin molecules bind to AChBP.The X-ray confirm that the major interaction between α-BTX and the HAP occur residues 187-192 of AchR α subunit.The short 13-mer binding HAP assumes a structure similar to the corresponding region of AChR upon binding to α-BTX. |
The superimposed model of AchBP and α-BTX shows residues 34–36 (corresponding to residues 36–38 of AChR σ subunit) and 162–165 (181–184) of the neighboring AChBP subunit (subunit B) as abutting the α-BTX molecule. | The superimposed model of AchBP and α-BTX shows residues 34–36 (corresponding to residues 36–38 of AChR σ subunit) and 162–165 (181–184) of the neighboring AChBP subunit (subunit B) as abutting the α-BTX molecule. | ||
| + | [[Image:Combined_model_of_α-BTX-HAP_and_AchBP.png]] | ||
| + | |||
| + | This figure(Michal Harel,Joel Sussman,2001) shows the stereo view of the combined model of α-BTX-HAP(Red) and AChBP structure with subunit A in green and subunit B in yellow showing the insertion of loop 2 of the toxin into the interface of the to subunits. | ||
| + | |||
== Function of Acetylcholine receptor == | == Function of Acetylcholine receptor == | ||
The α-Neurotoxins such as [http://en.wikipedia.org/wiki/Alpha-Bungarotoxin α-bungarotoxin] (α-BTX)can compete antagonists of acetylcholine for its site. So study the binding site of AChR is very important for the development of antidotesagainstα-BTX poisoning as well as drugs against, like [http://en.wikipedia.org/wiki/Alzheimer's_disease Alzheimer's disease] and [http://en.wikipedia.org/wiki/Nicotine nicotine addiction]. | The α-Neurotoxins such as [http://en.wikipedia.org/wiki/Alpha-Bungarotoxin α-bungarotoxin] (α-BTX)can compete antagonists of acetylcholine for its site. So study the binding site of AChR is very important for the development of antidotesagainstα-BTX poisoning as well as drugs against, like [http://en.wikipedia.org/wiki/Alzheimer's_disease Alzheimer's disease] and [http://en.wikipedia.org/wiki/Nicotine nicotine addiction]. | ||
Revision as of 22:07, 22 January 2015
| |||||||||||
Quiz
References
- ↑ Purves, Dale, George J. Augustine, David Fitzpatrick, William C. Hall, Anthony-Samuel LaMantia, James O. McNamara, and Leonard E. White (2008). Neuroscience. 4th ed. Sinauer Associates. pp. 156–7. ISBN 978-0-87893-697-7.
- ↑ Gonzalez-Gutierrez G, Cuello LG, Nair SK, Grosman C. Gating of the proton-gated ion channel from Gloeobacter violaceus at pH 4 as revealed by X-ray crystallography. Proc Natl Acad Sci U S A. 2013 Oct 28. PMID:24167270 doi:http://dx.doi.org/10.1073/pnas.1313156110
- ↑ Harel M, Kasher R, Nicolas A, Guss JM, Balass M, Fridkin M, Smit AB, Brejc K, Sixma TK, Katchalski-Katzir E, Sussman JL, Fuchs S. The binding site of acetylcholine receptor as visualized in the X-Ray structure of a complex between alpha-bungarotoxin and a mimotope peptide. Neuron. 2001 Oct 25;32(2):265-75. PMID:11683996
- ↑ Brejc K, van Dijk WJ, Klaassen RV, Schuurmans M, van Der Oost J, Smit AB, Sixma TK. Crystal structure of an ACh-binding protein reveals the ligand-binding domain of nicotinic receptors. Nature. 2001 May 17;411(6835):269-76. PMID:11357122 doi:10.1038/35077011
- ↑ Harel M, Kasher R, Nicolas A, Guss JM, Balass M, Fridkin M, Smit AB, Brejc K, Sixma TK, Katchalski-Katzir E, Sussman JL, Fuchs S. The binding site of acetylcholine receptor as visualized in the X-Ray structure of a complex between alpha-bungarotoxin and a mimotope peptide. Neuron. 2001 Oct 25;32(2):265-75. PMID:11683996
- ↑ Harel M, Kasher R, Nicolas A, Guss JM, Balass M, Fridkin M, Smit AB, Brejc K, Sixma TK, Katchalski-Katzir E, Sussman JL, Fuchs S. The binding site of acetylcholine receptor as visualized in the X-Ray structure of a complex between alpha-bungarotoxin and a mimotope peptide. Neuron. 2001 Oct 25;32(2):265-75. PMID:11683996
- ↑ Samson AO, Levitt M. Inhibition mechanism of the acetylcholine receptor by alpha-neurotoxins as revealed by normal-mode dynamics. Biochemistry. 2008 Apr 1;47(13):4065-70. doi: 10.1021/bi702272j. Epub 2008 Mar 8. PMID:18327915 doi:http://dx.doi.org/10.1021/bi702272j
Proteopedia Page Contributors and Editors (what is this?)
Ma Zhuang, Zicheng Ye, Angel Herraez, Alexander Berchansky, Michal Harel
