Sandbox Reserved 1059

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 3: Line 3:
NrdH is a redox protein part of a family of redox proteins. The other proteins that maintain the redox balance of this protein are three thioredoxins and three glutaredoxin-like proteins. Prokaryotes typically maintain redox homeostasis through low-molecular weight thiols (glutathione) and through proteins invovled in disulfide exchange (thioredoxins).
NrdH is a redox protein part of a family of redox proteins. The other proteins that maintain the redox balance of this protein are three thioredoxins and three glutaredoxin-like proteins. Prokaryotes typically maintain redox homeostasis through low-molecular weight thiols (glutathione) and through proteins invovled in disulfide exchange (thioredoxins).
<StructureSection load='1stp' size='340' side='right' caption='Caption for this structure' scene=''>
<StructureSection load='1stp' size='340' side='right' caption='Caption for this structure' scene=''>
 +
 +
[[Image:Image_2_(2).png|100px|left|thumb|Aromatic Amino Acids binding site]]
You may include any references to papers as in: the use of JSmol in Proteopedia <ref>DOI 10.1002/ijch.201300024</ref> or to the article describing Jmol <ref>PMID:21638687</ref> to the rescue.
You may include any references to papers as in: the use of JSmol in Proteopedia <ref>DOI 10.1002/ijch.201300024</ref> or to the article describing Jmol <ref>PMID:21638687</ref> to the rescue.
== Function ==
== Function ==
-
The main function is to act as a reducing partner of class 1B ribonucleotide reductase and for ribonucleotide reduction (RR), it is thought to supply electrons for this biochemical reaction. RR is one of the most fundamental biochemical processes that is required for DNA based life form to exist. Ribonucleotide reductases (RNRs) produce deoxyribonucleotides. These are precursors for DNA synthesis.
+
The main function is to act as a reducing partner of class 1B ribonucleotide reductase and for ribonucleotide reduction (RR), it is thought to supply electrons for this biochemical reaction. RR is one of the most fundamental biochemical processes that is required for DNA based life form to exist. Ribonucleotide reductases (RNRs) produce deoxyribonucleotides. These are precursors for DNA synthesis. <ref>DOI 10.1021/bi400191z</ref>
== Structure ==
== Structure ==
-
The tertiary structure of NrdH has a thioredoxin fold with 79 residues with a glutaredoxin-like sequence. However, unlike glutaredoxins, NrdH of ''Mycobacterium tuberculosis'' can accept electrons from thioredoxin reductase. The binding site of NrdH is specific for aromatic amino acids.
+
The tertiary structure of NrdH has a thioredoxin fold with 79 residues with a glutaredoxin-like sequence. However, unlike glutaredoxins, NrdH of ''Mycobacterium tuberculosis'' can accept electrons from thioredoxin reductase. The binding site of NrdH is specific for aromatic amino acids. <ref>DOI 10.1021/bi400191z</ref>
===Conserved Motifs===
===Conserved Motifs===
-
Members of the NrdH family are typically characterized by CVQC and WSGFRP sequence motifs. The residues between the two cysteines are known to affect redox potentials and pKa values. Also, by changing the target proteins, in turn, they regulate the function. The N-terminal cysteine acts as a nucleophile, whereas the C-terminal cysteine acts as a resolving cysteine.
+
Members of the NrdH family are typically characterized by CVQC and WSGFRP sequence motifs. The residues between the two cysteines are known to affect redox potentials and pKa values. Also, by changing the target proteins, in turn, they regulate the function. The N-terminal cysteine acts as a nucleophile, whereas the C-terminal cysteine acts as a resolving cysteine. <ref>DOI 10.1021/bi400191z</ref>
Within the CVQC motif, the amide oxygen of glutamine residue is firmly hydrogen bonded with the peptidyl nitrogen of Phe-44. The amide nitrogen of glutamine is then available for further hydrogen bonding. The carbonyl oxygen of Val-12 hydrogen bonds with peptidyl nitrogen of Ala-16.
Within the CVQC motif, the amide oxygen of glutamine residue is firmly hydrogen bonded with the peptidyl nitrogen of Phe-44. The amide nitrogen of glutamine is then available for further hydrogen bonding. The carbonyl oxygen of Val-12 hydrogen bonds with peptidyl nitrogen of Ala-16.
-
 
+
<ref>DOI 10.1021/bi400191z</ref>
-
The WSGFRP motif is stabilized by glutamine of the CVQC motif and phenylalanine is exposed to the solvent. Phe-64 and Val-12 with Ala-16 and Ala-20 create a distinct hydrophobic patch that is exposed to the solvent. This patch is of functional significance that could potentially interact with the C-terminus of RNR. This hydrogen bonding network lends to the stability of the redox active site.
+
The WSGFRP motif is stabilized by glutamine of the CVQC motif and phenylalanine is exposed to the solvent. Phe-64 and Val-12 with Ala-16 and Ala-20 create a distinct hydrophobic patch that is exposed to the solvent. This patch is of functional significance that could potentially interact with the C-terminus of RNR. This hydrogen bonding network lends to the stability of the redox active site.<ref>DOI 10.1021/bi400191z</ref>
== Chemical Processes ==
== Chemical Processes ==
-
NrdH is able to accept electrons from ''M. tuberculosis'' thioredoxin reductase and is able to reduce the disulfide bonds that are present in insulin.
+
NrdH is able to accept electrons from ''M. tuberculosis'' thioredoxin reductase and is able to reduce the disulfide bonds that are present in insulin.<ref>DOI 10.1021/bi400191z</ref>
== Disease ==
== Disease ==
== Relevance ==
== Relevance ==
-
Genes that encode for NrdE and NrdF are essential for growth and RR might be an attractive biochemical pathway for antimycobacterial drug discovery. Organisms that depend solely on class 1B RNR could potentially be the essential genes and potential drug targets for treating tuberculosis.
+
Genes that encode for NrdE and NrdF are essential for growth and RR might be an attractive biochemical pathway for antimycobacterial drug discovery. Organisms that depend solely on class 1B RNR could potentially be the essential genes and potential drug targets for treating tuberculosis.<ref>DOI 10.1021/bi400191z</ref>

Revision as of 12:25, 31 March 2015

This Sandbox is Reserved from 02/09/2015, through 05/31/2016 for use in the course "CH462: Biochemistry 2" taught by Geoffrey C. Hoops at the Butler University. This reservation includes Sandbox Reserved 1051 through Sandbox Reserved 1080.
To get started:
  • Click the edit this page tab at the top. Save the page after each step, then edit it again.
  • Click the 3D button (when editing, above the wikitext box) to insert Jmol.
  • show the Scene authoring tools, create a molecular scene, and save it. Copy the green link into the page.
  • Add a description of your scene. Use the buttons above the wikitext box for bold, italics, links, headlines, etc.

More help: Help:Editing

NrdH of Mycobacterium tuberculosis

NrdH is a redox protein part of a family of redox proteins. The other proteins that maintain the redox balance of this protein are three thioredoxins and three glutaredoxin-like proteins. Prokaryotes typically maintain redox homeostasis through low-molecular weight thiols (glutathione) and through proteins invovled in disulfide exchange (thioredoxins).

Caption for this structure

Drag the structure with the mouse to rotate

References

  1. Hanson, R. M., Prilusky, J., Renjian, Z., Nakane, T. and Sussman, J. L. (2013), JSmol and the Next-Generation Web-Based Representation of 3D Molecular Structure as Applied to Proteopedia. Isr. J. Chem., 53:207-216. doi:http://dx.doi.org/10.1002/ijch.201300024
  2. Herraez A. Biomolecules in the computer: Jmol to the rescue. Biochem Mol Biol Educ. 2006 Jul;34(4):255-61. doi: 10.1002/bmb.2006.494034042644. PMID:21638687 doi:10.1002/bmb.2006.494034042644
  3. Phulera S, Mande SC. The Crystal Structure of Mycobacterium tuberculosis NrdH at 0.87 A Suggests a Possible Mode of Its Activity. Biochemistry. 2013 May 28. PMID:23675692 doi:10.1021/bi400191z
  4. Phulera S, Mande SC. The Crystal Structure of Mycobacterium tuberculosis NrdH at 0.87 A Suggests a Possible Mode of Its Activity. Biochemistry. 2013 May 28. PMID:23675692 doi:10.1021/bi400191z
  5. Phulera S, Mande SC. The Crystal Structure of Mycobacterium tuberculosis NrdH at 0.87 A Suggests a Possible Mode of Its Activity. Biochemistry. 2013 May 28. PMID:23675692 doi:10.1021/bi400191z
  6. Phulera S, Mande SC. The Crystal Structure of Mycobacterium tuberculosis NrdH at 0.87 A Suggests a Possible Mode of Its Activity. Biochemistry. 2013 May 28. PMID:23675692 doi:10.1021/bi400191z
  7. Phulera S, Mande SC. The Crystal Structure of Mycobacterium tuberculosis NrdH at 0.87 A Suggests a Possible Mode of Its Activity. Biochemistry. 2013 May 28. PMID:23675692 doi:10.1021/bi400191z
  8. Phulera S, Mande SC. The Crystal Structure of Mycobacterium tuberculosis NrdH at 0.87 A Suggests a Possible Mode of Its Activity. Biochemistry. 2013 May 28. PMID:23675692 doi:10.1021/bi400191z
  9. Phulera S, Mande SC. The Crystal Structure of Mycobacterium tuberculosis NrdH at 0.87 A Suggests a Possible Mode of Its Activity. Biochemistry. 2013 May 28. PMID:23675692 doi:10.1021/bi400191z

External Resources

Personal tools