2v3n

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 4: Line 4:
|PDB= 2v3n |SIZE=350|CAPTION= <scene name='initialview01'>2v3n</scene>, resolution 2.73&Aring;
|PDB= 2v3n |SIZE=350|CAPTION= <scene name='initialview01'>2v3n</scene>, resolution 2.73&Aring;
|SITE= <scene name='pdbsite=AC1:B12+Binding+Site+For+Chain+A'>AC1</scene>, <scene name='pdbsite=AC3:Cl+Binding+Site+For+Chain+A'>AC3</scene>, <scene name='pdbsite=AC4:Cl+Binding+Site+For+Chain+A'>AC4</scene> and <scene name='pdbsite=AC5:Cl+Binding+Site+For+Chain+A'>AC5</scene>
|SITE= <scene name='pdbsite=AC1:B12+Binding+Site+For+Chain+A'>AC1</scene>, <scene name='pdbsite=AC3:Cl+Binding+Site+For+Chain+A'>AC3</scene>, <scene name='pdbsite=AC4:Cl+Binding+Site+For+Chain+A'>AC4</scene> and <scene name='pdbsite=AC5:Cl+Binding+Site+For+Chain+A'>AC5</scene>
-
|LIGAND= <scene name='pdbligand=CYN:CYANIDE+ION'>CYN</scene>, <scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene> and <scene name='pdbligand=B12:COBALAMIN'>B12</scene>
+
|LIGAND= <scene name='pdbligand=B12:COBALAMIN'>B12</scene>, <scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=CYN:CYANIDE+ION'>CYN</scene>
|ACTIVITY=
|ACTIVITY=
|GENE=
|GENE=
 +
|DOMAIN=
 +
|RELATEDENTRY=[[2bb6|2BB6]], [[2v3p|2V3P]], [[2bbc|2BBC]]
 +
|RESOURCES=<span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2v3n FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2v3n OCA], [http://www.ebi.ac.uk/pdbsum/2v3n PDBsum], [http://www.rcsb.org/pdb/explore.do?structureId=2v3n RCSB]</span>
}}
}}
Line 25: Line 28:
[[Category: Randaccio, L.]]
[[Category: Randaccio, L.]]
[[Category: Wuerges, J.]]
[[Category: Wuerges, J.]]
-
[[Category: B12]]
 
-
[[Category: CL]]
 
-
[[Category: CYN]]
 
[[Category: beta ligand substitution]]
[[Category: beta ligand substitution]]
[[Category: cobalt]]
[[Category: cobalt]]
Line 36: Line 36:
[[Category: vitamin b12 transport protein]]
[[Category: vitamin b12 transport protein]]
-
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Thu Mar 20 18:42:57 2008''
+
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Mon Mar 31 05:08:07 2008''

Revision as of 02:08, 31 March 2008


PDB ID 2v3n

Drag the structure with the mouse to rotate
, resolution 2.73Å
Sites: , , and
Ligands: , ,
Related: 2BB6, 2V3P, 2BBC


Resources: FirstGlance, OCA, PDBsum, RCSB
Coordinates: save as pdb, mmCIF, xml



CRYSTALLOGRAPHIC ANALYSIS OF UPPER AXIAL LIGAND SUBSTITUTIONS IN COBALAMIN BOUND TO TRANSCOBALAMIN


Overview

Cobalamin (Cbl, vitamin B12) is an essential micronutrient that is synthesized only by bacteria. Mammals have developed a complex system for internalization of this vitamin from the diet. Three binding proteins (haptocorrin, intrinsic factor, transcobalamin (TC)) and several specific cell surface receptors are involved in the process of intestinal absorption, plasma transport and cellular uptake. The recent literature on the binding proteins is briefly reviewed. A structural study is presented addressing a unique feature of TC among the three proteins, i.e., the displacement of the weak Co(III)-ligand H2O at the upper (or beta) axial side of H2O-Cbl by a histidine side chain. We have investigated crystallographically the beta-ligand exchange on Cbl bound to TC by crystallization of bovine holo-TC in the presence of either cyanide or sulfite. The resulting electron density maps show that the histidine side chain has been displaced by an exogenous ligand CN(-) or SO(3)(-2)to a lower extent than expected based on their higher affinity for Co and excess concentration with respect to histidine. This may reflect either reduced affinities of CN(-) and SO(3)(-2)or the advantageous binding of the protein-integrated His-residue when competing for the beta-site of Cbl bound to TC. The loop hosting the histidine residue appears more flexible after disruption of the coordination bond His-Cbl but no other differences are observed in the overall structure of holo-TC. These structural results are discussed in relation to a possible physiological role of histidine substitution for H2O and regarding the role of beta-conjugated Cbl-analogues recently proposed for targeted delivery of imaging agents.

About this Structure

2V3N is a Single protein structure of sequence from Bos taurus. Full crystallographic information is available from OCA.

Reference

Vitamin B12 transport proteins: crystallographic analysis of beta-axial ligand substitutions in cobalamin bound to transcobalamin., Wuerges J, Geremia S, Fedosov SN, Randaccio L, IUBMB Life. 2007 Nov;59(11):722-9. PMID:17943552

Page seeded by OCA on Mon Mar 31 05:08:07 2008

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools