4ypr

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 8: Line 8:
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4ypr FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4ypr OCA], [http://www.rcsb.org/pdb/explore.do?structureId=4ypr RCSB], [http://www.ebi.ac.uk/pdbsum/4ypr PDBsum]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4ypr FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4ypr OCA], [http://www.rcsb.org/pdb/explore.do?structureId=4ypr RCSB], [http://www.ebi.ac.uk/pdbsum/4ypr PDBsum]</span></td></tr>
</table>
</table>
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
The highly mutagenic A:oxoG base-pair in DNA most frequently arises by aberrant replication of the primary oxidative lesion C:oxoG. This lesion is particularly insidious, because neither of its constituent nucleobases faithfully transmit genetic information from the original C:G base-pair. Repair of A:oxoG is initiated by adenine DNA glycosylase which catalyzes hydrolytic cleavage of the aberrant A nucleobase from the DNA backbone. These enzymes, MutY in bacteria and hMYH in humans, scrupulously avoid processing of C:oxoG, because cleavage of the C residue in C:oxoG would actually promote mutagenic conversion to A:oxoG. Here we analyze the structural basis for rejection of C:oxoG by MutY, using a synthetic crystallography approach to capture the enzyme in the process of inspecting the C:oxoG anti-substrate, with which it ordinarily binds only fleetingly. We find that MutY uses two distinct strategies to avoid presentation of C to the enzyme active site. Firstly, MutY possesses an exo-site that serves as a decoy for C, and secondly, repulsive forces with a key active site residue prevent stable insertion of C into the nucleobase-recognition pocket within the enzyme active site.
 +
 +
Structural Basis for Avoidance of Promutagenic DNA Repair by MutY Adenine DNA Glycosylase.,Wang L, Lee SJ, Verdine G J Biol Chem. 2015 May 20. pii: jbc.M115.657866. PMID:25995449<ref>PMID:25995449</ref>
 +
 +
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 +
</div>
 +
== References ==
 +
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>

Revision as of 07:00, 3 June 2015

Crystal Structure of D144N MutY bound to its anti-substrate

4ypr, resolution 2.59Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools