5c4i

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
m (Protected "5c4i" [edit=sysop:move=sysop])
Line 1: Line 1:
-
'''Unreleased structure'''
+
==Structure of an Oxalate Oxidoreductase==
 +
<StructureSection load='5c4i' size='340' side='right' caption='[[5c4i]], [[Resolution|resolution]] 2.27&Aring;' scene=''>
 +
== Structural highlights ==
 +
<table><tr><td colspan='2'>[[5c4i]] is a 6 chain structure with sequence from [http://en.wikipedia.org/wiki/Moorella_thermoacetica Moorella thermoacetica] and [http://en.wikipedia.org/wiki/Moorella_thermoacetica_(strain_atcc_39073) Moorella thermoacetica (strain atcc 39073)]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5C4I OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5C4I FirstGlance]. <br>
 +
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=NA:SODIUM+ION'>NA</scene>, <scene name='pdbligand=SF4:IRON/SULFUR+CLUSTER'>SF4</scene>, <scene name='pdbligand=TPP:THIAMINE+DIPHOSPHATE'>TPP</scene></td></tr>
 +
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Oxalate_oxidoreductase Oxalate oxidoreductase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=1.2.7.10 1.2.7.10] </span></td></tr>
 +
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5c4i FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5c4i OCA], [http://www.rcsb.org/pdb/explore.do?structureId=5c4i RCSB], [http://www.ebi.ac.uk/pdbsum/5c4i PDBsum]</span></td></tr>
 +
</table>
 +
== Function ==
 +
[[http://www.uniprot.org/uniprot/OORA_MOOTA OORA_MOOTA]] Catalyzes the anaerobic oxidation of oxalate using a broad range of electron acceptors, including ferredoxin and the nickel-dependent carbon monoxide dehydrogenase. Does not require coenzyme A as cosubstrate. Enables anaerobic growth on oxalate which is used as energy source by the bacteria.<ref>PMID:20956531</ref> [[http://www.uniprot.org/uniprot/OORB_MOOTA OORB_MOOTA]] Catalyzes the anaerobic oxidation of oxalate using a broad range of electron acceptors, including ferredoxin and the nickel-dependent carbon monoxide dehydrogenase. Does not require coenzyme A as cosubstrate. Enables anaerobic growth on oxalate which is used as energy source by the bacteria.<ref>PMID:20956531</ref> [[http://www.uniprot.org/uniprot/OORD_MOOTA OORD_MOOTA]] Catalyzes the anaerobic oxidation of oxalate using a broad range of electron acceptors, including ferredoxin and the nickel-dependent carbon monoxide dehydrogenase. Does not require coenzyme A as cosubstrate. Enables anaerobic growth on oxalate which is used as energy source by the bacteria.<ref>PMID:20956531</ref>
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
Thiamine pyrophosphate (TPP), a derivative of vitamin B1, is a versatile and ubiquitous cofactor. When coupled with [4Fe-4S] clusters in microbial 2-oxoacid:ferredoxin oxidoreductases (OFORs), TPP is involved in catalyzing low-potential redox reactions that are important for the synthesis of key metabolites and the reduction of N2, H+, and CO2. We have determined the high-resolution (2.27 A) crystal structure of the TPP-dependent oxalate oxidoreductase (OOR), an enzyme that allows microbes to grow on oxalate, a widely occurring dicarboxylic acid that is found in soil and freshwater and is responsible for kidney stone disease in humans. OOR catalyzes the anaerobic oxidation of oxalate, harvesting the low-potential electrons for use in anaerobic reduction and fixation of CO2. We compare the OOR structure to that of the only other structurally characterized OFOR family member, pyruvate:ferredoxin oxidoreductase. This side-by-side structural analysis highlights the key similarities and differences that are relevant for the chemistry of this entire class of TPP-utilizing enzymes.
-
The entry 5c4i is ON HOLD
+
The Structure of an Oxalate Oxidoreductase Provides Insight into Microbial 2-Oxoacid Metabolism.,Gibson MI, Brignole EJ, Pierce E, Can M, Ragsdale SW, Drennan CL Biochemistry. 2015 Jun 24. PMID:26061898<ref>PMID:26061898</ref>
-
Authors: Gibson, Marcus I., Brignole, Edward J., Pierce, Elizabeth, Can, Mehmet, Ragsdale, Stephen W., Drennan, Catherine L.
+
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
-
 
+
</div>
-
Description: Structure of an Oxalate Oxidoreductase
+
== References ==
-
[[Category: Unreleased Structures]]
+
<references/>
-
[[Category: Pierce, Elizabeth, Can, Mehmet, Ragsdale, Stephen W]]
+
__TOC__
-
[[Category: Brignole, Edward J]]
+
</StructureSection>
-
[[Category: Drennan, Catherine L]]
+
[[Category: Moorella thermoacetica]]
-
[[Category: Gibson, Marcus I]]
+
[[Category: Oxalate oxidoreductase]]
 +
[[Category: Brignole, E J]]
 +
[[Category: Can, M]]
 +
[[Category: Drennan, C L]]
 +
[[Category: Gibson, M I]]
 +
[[Category: Pierce, E]]
 +
[[Category: Ragsdale, S W]]
 +
[[Category: Ofor]]
 +
[[Category: Oxalate]]
 +
[[Category: Oxidoreductase]]
 +
[[Category: Thiamine]]

Revision as of 12:09, 1 July 2015

Structure of an Oxalate Oxidoreductase

5c4i, resolution 2.27Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools