5c4i
From Proteopedia
(Difference between revisions)
m (Protected "5c4i" [edit=sysop:move=sysop]) |
|||
Line 1: | Line 1: | ||
- | ''' | + | ==Structure of an Oxalate Oxidoreductase== |
+ | <StructureSection load='5c4i' size='340' side='right' caption='[[5c4i]], [[Resolution|resolution]] 2.27Å' scene=''> | ||
+ | == Structural highlights == | ||
+ | <table><tr><td colspan='2'>[[5c4i]] is a 6 chain structure with sequence from [http://en.wikipedia.org/wiki/Moorella_thermoacetica Moorella thermoacetica] and [http://en.wikipedia.org/wiki/Moorella_thermoacetica_(strain_atcc_39073) Moorella thermoacetica (strain atcc 39073)]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5C4I OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5C4I FirstGlance]. <br> | ||
+ | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=NA:SODIUM+ION'>NA</scene>, <scene name='pdbligand=SF4:IRON/SULFUR+CLUSTER'>SF4</scene>, <scene name='pdbligand=TPP:THIAMINE+DIPHOSPHATE'>TPP</scene></td></tr> | ||
+ | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Oxalate_oxidoreductase Oxalate oxidoreductase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=1.2.7.10 1.2.7.10] </span></td></tr> | ||
+ | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5c4i FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5c4i OCA], [http://www.rcsb.org/pdb/explore.do?structureId=5c4i RCSB], [http://www.ebi.ac.uk/pdbsum/5c4i PDBsum]</span></td></tr> | ||
+ | </table> | ||
+ | == Function == | ||
+ | [[http://www.uniprot.org/uniprot/OORA_MOOTA OORA_MOOTA]] Catalyzes the anaerobic oxidation of oxalate using a broad range of electron acceptors, including ferredoxin and the nickel-dependent carbon monoxide dehydrogenase. Does not require coenzyme A as cosubstrate. Enables anaerobic growth on oxalate which is used as energy source by the bacteria.<ref>PMID:20956531</ref> [[http://www.uniprot.org/uniprot/OORB_MOOTA OORB_MOOTA]] Catalyzes the anaerobic oxidation of oxalate using a broad range of electron acceptors, including ferredoxin and the nickel-dependent carbon monoxide dehydrogenase. Does not require coenzyme A as cosubstrate. Enables anaerobic growth on oxalate which is used as energy source by the bacteria.<ref>PMID:20956531</ref> [[http://www.uniprot.org/uniprot/OORD_MOOTA OORD_MOOTA]] Catalyzes the anaerobic oxidation of oxalate using a broad range of electron acceptors, including ferredoxin and the nickel-dependent carbon monoxide dehydrogenase. Does not require coenzyme A as cosubstrate. Enables anaerobic growth on oxalate which is used as energy source by the bacteria.<ref>PMID:20956531</ref> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | Thiamine pyrophosphate (TPP), a derivative of vitamin B1, is a versatile and ubiquitous cofactor. When coupled with [4Fe-4S] clusters in microbial 2-oxoacid:ferredoxin oxidoreductases (OFORs), TPP is involved in catalyzing low-potential redox reactions that are important for the synthesis of key metabolites and the reduction of N2, H+, and CO2. We have determined the high-resolution (2.27 A) crystal structure of the TPP-dependent oxalate oxidoreductase (OOR), an enzyme that allows microbes to grow on oxalate, a widely occurring dicarboxylic acid that is found in soil and freshwater and is responsible for kidney stone disease in humans. OOR catalyzes the anaerobic oxidation of oxalate, harvesting the low-potential electrons for use in anaerobic reduction and fixation of CO2. We compare the OOR structure to that of the only other structurally characterized OFOR family member, pyruvate:ferredoxin oxidoreductase. This side-by-side structural analysis highlights the key similarities and differences that are relevant for the chemistry of this entire class of TPP-utilizing enzymes. | ||
- | The | + | The Structure of an Oxalate Oxidoreductase Provides Insight into Microbial 2-Oxoacid Metabolism.,Gibson MI, Brignole EJ, Pierce E, Can M, Ragsdale SW, Drennan CL Biochemistry. 2015 Jun 24. PMID:26061898<ref>PMID:26061898</ref> |
- | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
- | + | </div> | |
- | + | == References == | |
- | [[Category: | + | <references/> |
- | [[Category: | + | __TOC__ |
- | [[Category: Brignole, | + | </StructureSection> |
- | [[Category: Drennan, | + | [[Category: Moorella thermoacetica]] |
- | [[Category: Gibson, | + | [[Category: Oxalate oxidoreductase]] |
+ | [[Category: Brignole, E J]] | ||
+ | [[Category: Can, M]] | ||
+ | [[Category: Drennan, C L]] | ||
+ | [[Category: Gibson, M I]] | ||
+ | [[Category: Pierce, E]] | ||
+ | [[Category: Ragsdale, S W]] | ||
+ | [[Category: Ofor]] | ||
+ | [[Category: Oxalate]] | ||
+ | [[Category: Oxidoreductase]] | ||
+ | [[Category: Thiamine]] |
Revision as of 12:09, 1 July 2015
Structure of an Oxalate Oxidoreductase
|