5d8p
From Proteopedia
(Difference between revisions)
m (Protected "5d8p" [edit=sysop:move=sysop]) |
|||
| Line 1: | Line 1: | ||
| - | ''' | + | ==2.35A resolution structure of iron bound BfrB (wild-type, C2221 form) from Pseudomonas aeruginosa== |
| + | <StructureSection load='5d8p' size='340' side='right' caption='[[5d8p]], [[Resolution|resolution]] 2.35Å' scene=''> | ||
| + | == Structural highlights == | ||
| + | <table><tr><td colspan='2'>[[5d8p]] is a 12 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5D8P OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5D8P FirstGlance]. <br> | ||
| + | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=ACT:ACETATE+ION'>ACT</scene>, <scene name='pdbligand=FE2:FE+(II)+ION'>FE2</scene>, <scene name='pdbligand=HEM:PROTOPORPHYRIN+IX+CONTAINING+FE'>HEM</scene>, <scene name='pdbligand=K:POTASSIUM+ION'>K</scene></td></tr> | ||
| + | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[5d8o|5d8o]], [[5d8q|5d8q]], [[5d8r|5d8r]], [[5d8s|5d8s]], [[5d8x|5d8x]], [[5d8y|5d8y]]</td></tr> | ||
| + | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Ferroxidase Ferroxidase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=1.16.3.1 1.16.3.1] </span></td></tr> | ||
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5d8p FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5d8p OCA], [http://pdbe.org/5d8p PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5d8p RCSB], [http://www.ebi.ac.uk/pdbsum/5d8p PDBsum]</span></td></tr> | ||
| + | </table> | ||
| + | == Function == | ||
| + | [[http://www.uniprot.org/uniprot/Q9HY79_PSEAE Q9HY79_PSEAE]] Iron-storage protein (By similarity). Iron-storage protein, whose ferroxidase center binds Fe(2+) ions, oxidizes them by dioxygen to Fe(3+), and participates in the subsequent Fe(3+) oxide mineral core formation within the central cavity of the protein complex (By similarity).[PIRNR:PIRNR002560] | ||
| + | <div style="background-color:#fffaf0;"> | ||
| + | == Publication Abstract from PubMed == | ||
| + | Mobilization of iron stored in the interior cavity of BfrB requires electron transfer from the [2Fe-2S] cluster in Bfd to the core iron in BfrB. A crystal structure of the P. aeruginosa BfrB:Bfd complex revealed that BfrB can bind up to 12 Bfd molecules at 12 structurally identical binding sites, placing the [2Fe-2S] cluster of each Bfd immediately above a heme group in BfrB [Yao, H., Wang, Y., Lovell, S., Kumar, R., Ruvinsky, A. M., Battaile, K. P., Vakser, I. A., and Rivera, M. J. Am. Chem. Soc. (2012), 134, 13470-13481]. We report here a study aimed at characterizing the strength of the P. aeruginosa BfrB:Bfd association using surface plasmon resonance and isothermal titration calorimetry, as well as determining the binding energy hot spots at the protein-protein interaction interface. The results show that the 12 Bfd-binding sites on BfrB are equivalent and independent, and that the protein-protein association at each of these sites is driven entropically and is characterized by a dissociation constant (Kd) of approximately 3 muM. Determination of the binding energy hot spots was carried out by replacing certain residues that comprise the protein-protein interface with alanine, and by evaluating the effect of the mutation on Kd and on the efficiency of core iron mobilization from BfrB. The results identified hot-spot residues in both proteins [L_B^68, E_A^81 and E_A^85 in BfrB (superscript for residue number and subscript for chain) and Y2 and L5 in Bfd], which network at the interface to produce a highly complementary hot region for the interaction. The hot-spot residues are conserved in the amino acid sequences of Bfr and Bfd proteins from a number of gram negative pathogens, indicating that the BfrB:Bfd interaction is of widespread significance in bacterial iron metabolism. | ||
| - | + | Characterization of the Bacterioferritin/Bacterioferritin Associated Ferredoxin (BfrB:Bfd) Protein-Protein Interaction in Solution and Determination of Binding Energy Hot Spots.,Wang Y, Yao H, Cheng Y, Lovell SW, Battaile KP, Middaugh CR, Rivera M Biochemistry. 2015 Sep 28. PMID:26368531<ref>PMID:26368531</ref> | |
| - | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
| - | + | </div> | |
| - | + | <div class="pdbe-citations 5d8p" style="background-color:#fffaf0;"></div> | |
| - | [[Category: | + | == References == |
| + | <references/> | ||
| + | __TOC__ | ||
| + | </StructureSection> | ||
| + | [[Category: Ferroxidase]] | ||
| + | [[Category: Battaile, K P]] | ||
| + | [[Category: Lovell, S]] | ||
[[Category: Rivera, M]] | [[Category: Rivera, M]] | ||
[[Category: Wang, Y]] | [[Category: Wang, Y]] | ||
| - | [[Category: Battaile, K.P]] | ||
| - | [[Category: Lovell, S]] | ||
[[Category: Yao, H]] | [[Category: Yao, H]] | ||
| + | [[Category: Electron transport]] | ||
| + | [[Category: Iron binding]] | ||
| + | [[Category: Iron mobilization]] | ||
| + | [[Category: Iron storage]] | ||
| + | [[Category: Oxidoreductase]] | ||
Revision as of 07:44, 7 October 2015
2.35A resolution structure of iron bound BfrB (wild-type, C2221 form) from Pseudomonas aeruginosa
| |||||||||||
