| Structural highlights
Function
[ERA_ECOLI] An essential GTPase that binds both GDP and GTP, with nucleotide exchange occurring on the order of seconds whereas hydrolysis occurs on the order of minutes. Plays a role in numerous processes, including cell cycle regulation, energy metabolism, as a chaperone for 16S rRNA processing and 30S ribosomal subunit biogenesis. Its presence in the 30S subunit may prevent translation initiation. Seems to be critical for maintaining cell growth and cell divison rates; a dramatic reduction in Era protein levels temporarily arrests cell growth just before cytokinesis (at the predivisional two-cell stage) and delays cell division. Era mutant era1 suppresses some temperature-sensitive mutations that affect DNA replication and chromosome partitioning and segregation. The dominant-negative Era-de mutant which is missing residues in a putative effector region, is unable to complement the disruption mutant; upon overproduction it shows a significant decrease in cell viability and a synthetic lethal phenotype in the presence of acetate. Era function probably overlaps RbfA. Binds to the pre-30S subunit through several stages of protein assembly.[1] [2] [3] [4] [5]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
Era (E. coliRas-like protein) is a highly conserved and essential GTPase in bacteria. It binds to the 16S ribosomal RNA (rRNA) of the small (30S) ribosomal subunit, and its depletion leads to accumulation of an unprocessed precursor of the 16S rRNA. We have obtained a three-dimensional cryo-electron microscopic map of the Thermus thermophilus 30S-Era complex. Era binds in the cleft between the head and platform of the 30S subunit and locks the subunit in a conformation that is not favorable for association with the large (50S) ribosomal subunit. The RNA binding KH motif present within the C-terminal domain of Era interacts with the conserved nucleotides in the 3' region of the 16S rRNA. Furthermore, Era makes contact with several assembly elements of the 30S subunit. These observations suggest a direct involvement of Era in the assembly and maturation of the 30S subunit.
Interaction of Era with the 30S ribosomal subunit implications for 30S subunit assembly.,Sharma MR, Barat C, Wilson DN, Booth TM, Kawazoe M, Hori-Takemoto C, Shirouzu M, Yokoyama S, Fucini P, Agrawal RK Mol Cell. 2005 Apr 29;18(3):319-29. PMID:15866174[6]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Britton RA, Powell BS, Dasgupta S, Sun Q, Margolin W, Lupski JR, Court DL. Cell cycle arrest in Era GTPase mutants: a potential growth rate-regulated checkpoint in Escherichia coli. Mol Microbiol. 1998 Feb;27(4):739-50. PMID:9515700
- ↑ Inoue K, Chen J, Kato I, Inouye M. Specific growth inhibition by acetate of an Escherichia coli strain expressing Era-dE, a dominant negative Era mutant. J Mol Microbiol Biotechnol. 2002 Jul;4(4):379-88. PMID:12125819
- ↑ Inoue K, Alsina J, Chen J, Inouye M. Suppression of defective ribosome assembly in a rbfA deletion mutant by overexpression of Era, an essential GTPase in Escherichia coli. Mol Microbiol. 2003 May;48(4):1005-16. PMID:12753192
- ↑ Inoue K, Chen J, Tan Q, Inouye M. Era and RbfA have overlapping function in ribosome biogenesis in Escherichia coli. J Mol Microbiol Biotechnol. 2006;11(1-2):41-52. PMID:16825789 doi:10.1159/000092818
- ↑ Bunner AE, Nord S, Wikstrom PM, Williamson JR. The effect of ribosome assembly cofactors on in vitro 30S subunit reconstitution. J Mol Biol. 2010 Apr 23;398(1):1-7. doi: 10.1016/j.jmb.2010.02.036. Epub 2010 Feb, 24. PMID:20188109 doi:10.1016/j.jmb.2010.02.036
- ↑ Sharma MR, Barat C, Wilson DN, Booth TM, Kawazoe M, Hori-Takemoto C, Shirouzu M, Yokoyama S, Fucini P, Agrawal RK. Interaction of Era with the 30S ribosomal subunit implications for 30S subunit assembly. Mol Cell. 2005 Apr 29;18(3):319-29. PMID:15866174 doi:10.1016/j.molcel.2005.03.028
|