1unh
From Proteopedia
Line 7: | Line 7: | ||
|ACTIVITY= | |ACTIVITY= | ||
|GENE= | |GENE= | ||
+ | |DOMAIN= | ||
+ | |RELATEDENTRY= | ||
+ | |RESOURCES=<span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1unh FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1unh OCA], [http://www.ebi.ac.uk/pdbsum/1unh PDBsum], [http://www.rcsb.org/pdb/explore.do?structureId=1unh RCSB]</span> | ||
}} | }} | ||
Line 14: | Line 17: | ||
==Overview== | ==Overview== | ||
The cyclin-dependent kinases (CDK) CDK1, CDK2, CDK4, and CDK6 are serine/threonine protein kinases targeted in cancer therapy due to their role in cell cycle progression. The postmitotic CDK5 is involved in biological pathways important for neuronal migration and differentiation. CDK5 represents an attractive pharmacological target as its deregulation is implicated in various neurodegenerative diseases such as Alzheimer's, Parkinson's, and Niemann-Pick type C diseases, ischemia, and amyotrophic lateral sclerosis. We have generated an improved crystal form of CDK5 in complex with p25, a segment of the p35 neuronal activator. The crystals were used to solve the structure of CDK5/p25 with (R)-roscovitine and aloisine at a resolution of 2.2 and 2.3 A, respectively. The structure of CDK5/p25/roscovitine provides a rationale for the preference of CDK5 for the R over the S stereoisomer. Furthermore, roscovitine stabilized an unusual collapsed conformation of the glycine-rich loop, an important site of CDK regulation, and we report an investigation of the effects of glycine-rich loop phosphorylation on roscovitine binding. The CDK5/p25 crystals represent a valuable new tool for the identification and optimization of selective CDK inhibitors. | The cyclin-dependent kinases (CDK) CDK1, CDK2, CDK4, and CDK6 are serine/threonine protein kinases targeted in cancer therapy due to their role in cell cycle progression. The postmitotic CDK5 is involved in biological pathways important for neuronal migration and differentiation. CDK5 represents an attractive pharmacological target as its deregulation is implicated in various neurodegenerative diseases such as Alzheimer's, Parkinson's, and Niemann-Pick type C diseases, ischemia, and amyotrophic lateral sclerosis. We have generated an improved crystal form of CDK5 in complex with p25, a segment of the p35 neuronal activator. The crystals were used to solve the structure of CDK5/p25 with (R)-roscovitine and aloisine at a resolution of 2.2 and 2.3 A, respectively. The structure of CDK5/p25/roscovitine provides a rationale for the preference of CDK5 for the R over the S stereoisomer. Furthermore, roscovitine stabilized an unusual collapsed conformation of the glycine-rich loop, an important site of CDK regulation, and we report an investigation of the effects of glycine-rich loop phosphorylation on roscovitine binding. The CDK5/p25 crystals represent a valuable new tool for the identification and optimization of selective CDK inhibitors. | ||
- | |||
- | ==Disease== | ||
- | Known diseases associated with this structure: Microcephaly, primary autosomal recessive, 3 OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=608201 608201]] | ||
==About this Structure== | ==About this Structure== | ||
Line 29: | Line 29: | ||
[[Category: Massimiliano, L.]] | [[Category: Massimiliano, L.]] | ||
[[Category: Musacchio, A.]] | [[Category: Musacchio, A.]] | ||
- | [[Category: IXM]] | ||
[[Category: atp-analogue]] | [[Category: atp-analogue]] | ||
[[Category: cyclin-dependent kinase]] | [[Category: cyclin-dependent kinase]] | ||
Line 36: | Line 35: | ||
[[Category: neurodegenerative disease]] | [[Category: neurodegenerative disease]] | ||
- | ''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on | + | ''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Mon Mar 31 00:12:43 2008'' |
Revision as of 21:12, 30 March 2008
| |||||||
, resolution 2.35Å | |||||||
---|---|---|---|---|---|---|---|
Sites: | |||||||
Ligands: | |||||||
Resources: | FirstGlance, OCA, PDBsum, RCSB | ||||||
Coordinates: | save as pdb, mmCIF, xml |
STRUCTURAL MECHANISM FOR THE INHIBITION OF CDK5-P25 BY ROSCOVITINE, ALOISINE AND INDIRUBIN.
Overview
The cyclin-dependent kinases (CDK) CDK1, CDK2, CDK4, and CDK6 are serine/threonine protein kinases targeted in cancer therapy due to their role in cell cycle progression. The postmitotic CDK5 is involved in biological pathways important for neuronal migration and differentiation. CDK5 represents an attractive pharmacological target as its deregulation is implicated in various neurodegenerative diseases such as Alzheimer's, Parkinson's, and Niemann-Pick type C diseases, ischemia, and amyotrophic lateral sclerosis. We have generated an improved crystal form of CDK5 in complex with p25, a segment of the p35 neuronal activator. The crystals were used to solve the structure of CDK5/p25 with (R)-roscovitine and aloisine at a resolution of 2.2 and 2.3 A, respectively. The structure of CDK5/p25/roscovitine provides a rationale for the preference of CDK5 for the R over the S stereoisomer. Furthermore, roscovitine stabilized an unusual collapsed conformation of the glycine-rich loop, an important site of CDK regulation, and we report an investigation of the effects of glycine-rich loop phosphorylation on roscovitine binding. The CDK5/p25 crystals represent a valuable new tool for the identification and optimization of selective CDK inhibitors.
About this Structure
1UNH is a Protein complex structure of sequences from Homo sapiens. Full crystallographic information is available from OCA.
Reference
Mechanism of CDK5/p25 binding by CDK inhibitors., Mapelli M, Massimiliano L, Crovace C, Seeliger MA, Tsai LH, Meijer L, Musacchio A, J Med Chem. 2005 Feb 10;48(3):671-9. PMID:15689152
Page seeded by OCA on Mon Mar 31 00:12:43 2008