Structural highlights
Function
[S10A1_RAT] Weakly binds calcium but binds zinc very tightly-distinct binding sites with different affinities exist for both ions on each monomer. Physiological concentrations of potassium ion antagonize the binding of both divalent cations, especially affecting high-affinity calcium-binding sites.
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
S100A1 is an EF-hand-containing Ca(2+)-binding protein that undergoes a conformational change upon binding calcium as is necessary to interact with protein targets and initiate a biological response. To better understand how calcium influences the structure and function of S100A1, the three-dimensional structure of calcium-bound S100A1 was determined by multidimensional NMR spectroscopy and compared to the previously determined structure of apo. In total, 3354 nuclear Overhauser effect-derived distance constraints, 240 dihedral constraints, 160 hydrogen bond constraints, and 362 residual dipolar coupling restraints derived from a series of two-dimensional, three-dimensional, and four-dimensional NMR experiments were used in its structure determination (>21 constraints per residue). As with other dimeric S100 proteins, S100A1 is a symmetric homodimer with helices 1, 1', 4, and 4' associating into an X-type four-helix bundle at the dimer interface. Within each subunit there are four alpha-helices and a short antiparallel beta-sheet typical of two helix-loop-helix EF-hand calcium-binding domains. The addition of calcium did not change the interhelical angle of helices 1 and 2 in the pseudo EF-hand significantly; however, there was a large reorientation of helix 3 in the typical EF-hand. The large conformational change exposes a hydrophobic cleft, defined by residues in the hinge region, the C terminus, and regions of helix 3, which are important for the interaction between S100A1 and a peptide (TRTK-12) derived from the actin-capping protein CapZ.
The three-dimensional solution structure of Ca(2+)-bound S100A1 as determined by NMR spectroscopy.,Wright NT, Varney KM, Ellis KC, Markowitz J, Gitti RK, Zimmer DB, Weber DJ J Mol Biol. 2005 Oct 21;353(2):410-26. PMID:16169012[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Wright NT, Varney KM, Ellis KC, Markowitz J, Gitti RK, Zimmer DB, Weber DJ. The three-dimensional solution structure of Ca(2+)-bound S100A1 as determined by NMR spectroscopy. J Mol Biol. 2005 Oct 21;353(2):410-26. PMID:16169012 doi:10.1016/j.jmb.2005.08.027