| Structural highlights
Function
[ARHG1_HUMAN] Seems to play a role in the regulation of RhoA GTPase by guanine nucleotide-binding alpha-12 (GNA12) and alpha-13 (GNA13) subunits. Acts as GTPase-activating protein (GAP) for GNA12 and GNA13, and as guanine nucleotide exchange factor (GEF) for RhoA GTPase. Activated G alpha 13/GNA13 stimulates the RhoGEF activity through interaction with the RGS-like domain. This GEF activity is inhibited by binding to activated GNA12. Mediates angiotensin-2-induced RhoA activation.[1] [2] [3] [4] [GNAI1_RAT] Guanine nucleotide-binding proteins (G proteins) are involved as modulators or transducers in various transmembrane signaling systems. The G(i) proteins are involved in hormonal regulation of adenylate cyclase: they inhibit the cyclase in response to beta-adrenergic stimuli. The inactive GDP-bound form prevents the association of RGS14 with centrosomes and is required for the translocation of RGS14 from the cytoplasm to the plasma membrane. May play a role in cell division.[5]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
p115RhoGEF, a guanine nucleotide exchange factor (GEF) for Rho GTPase, is also a GTPase-activating protein (GAP) for G12 and G13 heterotrimeric Galpha subunits. The GAP function of p115RhoGEF resides within the N-terminal region of p115RhoGEF (the rgRGS domain), which includes a module that is structurally similar to RGS (regulators of G-protein signaling) domains. We present here the crystal structure of the rgRGS domain of p115RhoGEF in complex with a chimera of Galpha13 and Galphai1. Two distinct surfaces of rgRGS interact with Galpha. The N-terminal betaN-alphaN hairpin of rgRGS, rather than its RGS module, forms intimate contacts with the catalytic site of Galpha. The interface between the RGS module of rgRGS and Galpha is similar to that of a Galpha-effector complex, suggesting a role for the rgRGS domain in the stimulation of the GEF activity of p115RhoGEF by Galpha13.
Structure of the p115RhoGEF rgRGS domain-Galpha13/i1 chimera complex suggests convergent evolution of a GTPase activator.,Chen Z, Singer WD, Sternweis PC, Sprang SR Nat Struct Mol Biol. 2005 Feb;12(2):191-7. Epub 2005 Jan 16. PMID:15665872[6]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Hart MJ, Sharma S, elMasry N, Qiu RG, McCabe P, Polakis P, Bollag G. Identification of a novel guanine nucleotide exchange factor for the Rho GTPase. J Biol Chem. 1996 Oct 11;271(41):25452-8. PMID:8810315
- ↑ Kozasa T, Jiang X, Hart MJ, Sternweis PM, Singer WD, Gilman AG, Bollag G, Sternweis PC. p115 RhoGEF, a GTPase activating protein for Galpha12 and Galpha13. Science. 1998 Jun 26;280(5372):2109-11. PMID:9641915
- ↑ Hart MJ, Jiang X, Kozasa T, Roscoe W, Singer WD, Gilman AG, Sternweis PC, Bollag G. Direct stimulation of the guanine nucleotide exchange activity of p115 RhoGEF by Galpha13. Science. 1998 Jun 26;280(5372):2112-4. PMID:9641916
- ↑ Guilluy C, Bregeon J, Toumaniantz G, Rolli-Derkinderen M, Retailleau K, Loufrani L, Henrion D, Scalbert E, Bril A, Torres RM, Offermanns S, Pacaud P, Loirand G. The Rho exchange factor Arhgef1 mediates the effects of angiotensin II on vascular tone and blood pressure. Nat Med. 2010 Feb;16(2):183-90. doi: 10.1038/nm.2079. Epub 2010 Jan 24. PMID:20098430 doi:10.1038/nm.2079
- ↑ Shu FJ, Ramineni S, Amyot W, Hepler JR. Selective interactions between Gi alpha1 and Gi alpha3 and the GoLoco/GPR domain of RGS14 influence its dynamic subcellular localization. Cell Signal. 2007 Jan;19(1):163-76. Epub 2006 Jul 25. PMID:16870394 doi:http://dx.doi.org/10.1016/j.cellsig.2006.06.002
- ↑ Chen Z, Singer WD, Sternweis PC, Sprang SR. Structure of the p115RhoGEF rgRGS domain-Galpha13/i1 chimera complex suggests convergent evolution of a GTPase activator. Nat Struct Mol Biol. 2005 Feb;12(2):191-7. Epub 2005 Jan 16. PMID:15665872 doi:10.1038/nsmb888
|