Structural highlights
Function
[RECO_BOVIN] Seems to be implicated in the pathway from retinal rod guanylate cyclase to rhodopsin. May be involved in the inhibition of the phosphorylation of rhodopsin in a calcium-dependent manner. The calcium-bound recoverin prolongs the photoresponse.[1] [2]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
Recoverin is a Ca2+-regulated signal transduction modulator found in vertebrate retina that has been shown to undergo dramatic conformational changes upon Ca2+ binding to its two functional EF-hand motifs. To elucidate the differential impact of the N-terminal myristoylation as well as occupation of the two Ca2+ binding sites on recoverin structure and function, we have investigated a non-myristoylated E85Q mutant exhibiting virtually no Ca2+ binding to EF-2. Crystal structures of the mutant protein as well as the non-myristoylated wild-type have been determined. Although the non-myristoylated E85Q mutant does not display any functional activity, its three-dimensional structure in the presence of Ca2+ resembles the myristoylated wild-type with two Ca2+ but is quite dissimilar from the myristoylated E85Q mutant. We conclude that the N-terminal myristoyl modification significantly stabilizes the conformation of the Ca2+-free protein (i.e. the T conformation) during the stepwise transition toward the fully Ca2+-occupied state. On the basis of these observations, a refined model for the role of the myristoyl group as an intrinsic allosteric modulator is proposed.
Impact of N-terminal myristoylation on the Ca2+-dependent conformational transition in recoverin.,Weiergraber OH, Senin II, Philippov PP, Granzin J, Koch KW J Biol Chem. 2003 Jun 20;278(25):22972-9. Epub 2003 Apr 9. PMID:12686556[3]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Hurley JB, Dizhoor AM, Ray S, Stryer L. Recoverin's role: conclusion withdrawn. Science. 1993 May 7;260(5109):740. PMID:8097896
- ↑ Kawamura S, Hisatomi O, Kayada S, Tokunaga F, Kuo CH. Recoverin has S-modulin activity in frog rods. J Biol Chem. 1993 Jul 15;268(20):14579-82. PMID:8392055
- ↑ Weiergraber OH, Senin II, Philippov PP, Granzin J, Koch KW. Impact of N-terminal myristoylation on the Ca2+-dependent conformational transition in recoverin. J Biol Chem. 2003 Jun 20;278(25):22972-9. Epub 2003 Apr 9. PMID:12686556 doi:10.1074/jbc.M300447200