User:Anthony Milto/Sandbox 1

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 4: Line 4:
==Structure==
==Structure==
-
MyoD has a basic region at its amino-terminal end, which functions in binding the transcription factor to a region of the DNA known as the E-box. At the carboxyl-terminal end is MyoD's HLH domain. The HLH domain functions in protein-protein interactions and forms homodimeric and heterodimeric complexes <ref>PMcID: 463060</ref>.MyoD also contains an acidic activation domain. The activity of this activation domain has been observed to increase drastically upon deletion of residues in other parts of the protein. This suggests that the acidic activation domain is buried within the protein in vivo and can be activated by subtle changes in structure [[3]]. MyoD's ability to activate endogenous genes has been shown to rely on two regions. The first is a region rich in cysteine and histidine residues that is between the acidic activation domain and the bHLH domain. The second is a region near the carboxyl terminus of the protein. These regions are conserved in proteins with shared functionality [[4]].
+
MyoD has a basic region at its amino-terminal end, which functions in binding the transcription factor to a region of the DNA known as the E-box. At the carboxyl-terminal end is MyoD's HLH domain. The HLH domain functions in protein-protein interactions and forms homodimeric and heterodimeric complexes <ref>PMCID: PMC463060</ref>.MyoD also contains an acidic activation domain. The activity of this activation domain has been observed to increase drastically upon deletion of residues in other parts of the protein. This suggests that the acidic activation domain is buried within the protein in vivo and can be activated by subtle changes in structure [[3]]. MyoD's ability to activate endogenous genes has been shown to rely on two regions. The first is a region rich in cysteine and histidine residues that is between the acidic activation domain and the bHLH domain. The second is a region near the carboxyl terminus of the protein. These regions are conserved in proteins with shared functionality [[4]].
== Regulation ==
== Regulation ==
Line 12: Line 12:
==DNA Interaction ==
==DNA Interaction ==
-
MyoD, along with most other bHLH proteins, recognizes the concensus DNA sequence CAN NTG, where N can be any base. This sequence is known as the E-box and is bound by MyoD's <scene name='71/714943/Br_dna_interaction/1'>basic region</scene> in DNA's major groove. MyoD's basic region residues indirectly establish specificity for specific E-box sequences by influencing the conformation in which the basic region binds DNA. There are <scene name='71/714943/Dna_interacting_aas/1'>four residues</scene> responsible for the DNA interaction that provides MyoD's myogenic effect: Arg111, Ala114, Thr115, and Lys124.
+
MyoD, along with most other bHLH proteins, recognizes the concensus DNA sequence CAN NTG, where N can be any base. This sequence is known as the E-box and is bound by MyoD's <scene name='71/714943/Br_dna_interaction/1'>basic region</scene> in DNA's major groove. MyoD's basic region residues indirectly establish specificity for specific E-box sequences by influencing the conformation in which the basic region binds DNA. There are <scene name='71/714943/Dna_interacting_aas/1'>four residues</scene> responsible for the DNA interaction that provides MyoD's myogenic effect: Arg111, Ala114, Thr115, and Lys124 <ref>PMCID: PMC85082</ref>.
== Knockout Effects ==
== Knockout Effects ==

Revision as of 00:52, 13 October 2015

Function and Classification

MyoD, along with Myf5, is responsible for muscle cell differentiation and establishment of the myogenic lineage. It is a member of the basic helix loop helix (bHLH) family and myogenic factors subfamily of proteins1.

Crystal Structure of MyoD bHLH Domain

Drag the structure with the mouse to rotate

References

[1] [2] [3] [4] [5] http://www.ncbi.nlm.nih.gov/pmc/articles/PMC232510/


  1. PMCID: PMC463060
  2. Breitschopf K, Bengal E, Ziv T, Admon A, Ciechanover A. A novel site for ubiquitination: the N-terminal residue, and not internal lysines of MyoD, is essential for conjugation and degradation of the protein. EMBO J. 1998 Oct 15;17(20):5964-73. PMID:9774340 doi:http://dx.doi.org/10.1093/emboj/17.20.5964
  3. PMCID: PMC85082

Proteopedia Page Contributors and Editors (what is this?)

Anthony Milto

Personal tools