2n59

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 1: Line 1:
-
'''Unreleased structure'''
 
-
The entry 2n59 is ON HOLD until Paper Publication
+
==Solution Structure of R. palustris CsgH==
 +
<StructureSection load='2n59' size='340' side='right' caption='[[2n59]], [[NMR_Ensembles_of_Models | 20 NMR models]]' scene=''>
 +
== Structural highlights ==
 +
<table><tr><td colspan='2'>[[2n59]] is a 1 chain structure. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2N59 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2N59 FirstGlance]. <br>
 +
</td></tr><tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2n59 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2n59 OCA], [http://pdbe.org/2n59 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=2n59 RCSB], [http://www.ebi.ac.uk/pdbsum/2n59 PDBsum]</span></td></tr>
 +
</table>
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
Polypeptide aggregation into amyloid is linked with several debilitating human diseases. Despite the inherent risk of aggregation-induced cytotoxicity, bacteria control the export of amyloid-prone subunits and assemble adhesive amyloid fibres during biofilm formation. An Escherichia protein, CsgC potently inhibits amyloid formation of curli amyloid proteins. Here we unlock its mechanism of action, and show that CsgC strongly inhibits primary nucleation via electrostatically-guided molecular encounters, which expands the conformational distribution of disordered curli subunits. This delays the formation of higher order intermediates and maintains amyloidogenic subunits in a secretion-competent form. New structural insight also reveal that CsgC is part of diverse family of bacterial amyloid inhibitors. Curli assembly is therefore not only arrested in the periplasm, but the preservation of conformational flexibility also enables efficient secretion to the cell surface. Understanding how bacteria safely handle amyloidogenic polypeptides contribute towards efforts to control aggregation in disease-causing amyloids and amyloid-based biotechnological applications.
-
Authors: Hawthorne, W.J., Taylor, J.D., Escalera-Maurer, A., Lambert, S., Koch, M., Scull, N., Sefer, L., Xu, Y., Matthews, S.J.
+
Electrostatically-guided inhibition of Curli amyloid nucleation by the CsgC-like family of chaperones.,Taylor JD, Hawthorne WJ, Lo J, Dear A, Jain N, Meisl G, Andreasen M, Fletcher C, Koch M, Darvill N, Scull N, Escalera-Maurer A, Sefer L, Wenman R, Lambert S, Jean J, Xu Y, Turner B, Kazarian SG, Chapman MR, Bubeck D, de Simone A, Knowles TP, Matthews SJ Sci Rep. 2016 Apr 21;6:24656. doi: 10.1038/srep24656. PMID:27098162<ref>PMID:27098162</ref>
-
Description: Solution Structure of R. palustris CsgH
+
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
-
[[Category: Unreleased Structures]]
+
</div>
-
[[Category: Matthews, S.J]]
+
<div class="pdbe-citations 2n59" style="background-color:#fffaf0;"></div>
-
[[Category: Sefer, L]]
+
== References ==
-
[[Category: Hawthorne, W.J]]
+
<references/>
-
[[Category: Koch, M]]
+
__TOC__
-
[[Category: Xu, Y]]
+
</StructureSection>
-
[[Category: Scull, N]]
+
[[Category: Escalera-Maurer, A]]
[[Category: Escalera-Maurer, A]]
 +
[[Category: Hawthorne, W J]]
 +
[[Category: Koch, M]]
[[Category: Lambert, S]]
[[Category: Lambert, S]]
-
[[Category: Taylor, J.D]]
+
[[Category: Matthews, S J]]
 +
[[Category: Scull, N]]
 +
[[Category: Sefer, L]]
 +
[[Category: Taylor, J D]]
 +
[[Category: Xu, Y]]
 +
[[Category: Unknown function]]

Revision as of 16:57, 15 May 2016

Solution Structure of R. palustris CsgH

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools