1bcb
From Proteopedia
Line 1: | Line 1: | ||
[[Image:1bcb.gif|left|200px]] | [[Image:1bcb.gif|left|200px]] | ||
- | + | <!-- | |
- | + | The line below this paragraph, containing "STRUCTURE_1bcb", creates the "Structure Box" on the page. | |
- | + | You may change the PDB parameter (which sets the PDB file loaded into the applet) | |
- | + | or the SCENE parameter (which sets the initial scene displayed when the page is loaded), | |
- | | | + | or leave the SCENE parameter empty for the default display. |
- | | | + | --> |
- | + | {{STRUCTURE_1bcb| PDB=1bcb | SCENE= }} | |
- | + | ||
- | + | ||
- | }} | + | |
'''INTRAMOLECULAR TRIPLEX, NMR, 10 STRUCTURES''' | '''INTRAMOLECULAR TRIPLEX, NMR, 10 STRUCTURES''' | ||
Line 19: | Line 16: | ||
==About this Structure== | ==About this Structure== | ||
- | + | Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1BCB OCA]. | |
==Reference== | ==Reference== | ||
The contribution of cytosine protonation to the stability of parallel DNA triple helices., Asensio JL, Lane AN, Dhesi J, Bergqvist S, Brown T, J Mol Biol. 1998 Feb 6;275(5):811-22. PMID:[http://www.ncbi.nlm.nih.gov/pubmed/9480771 9480771] | The contribution of cytosine protonation to the stability of parallel DNA triple helices., Asensio JL, Lane AN, Dhesi J, Bergqvist S, Brown T, J Mol Biol. 1998 Feb 6;275(5):811-22. PMID:[http://www.ncbi.nlm.nih.gov/pubmed/9480771 9480771] | ||
- | [[Category: Protein complex]] | ||
[[Category: Asensio, J L.]] | [[Category: Asensio, J L.]] | ||
[[Category: Brown, T.]] | [[Category: Brown, T.]] | ||
[[Category: Lane, A N.]] | [[Category: Lane, A N.]] | ||
- | [[Category: | + | [[Category: Deoxyribonucleic acid]] |
- | [[Category: | + | [[Category: Dna triplex]] |
- | + | ''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Fri May 2 11:20:01 2008'' | |
- | ''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on | + |
Revision as of 08:20, 2 May 2008
INTRAMOLECULAR TRIPLEX, NMR, 10 STRUCTURES
Overview
The influence of the position of the CG.C+ triplet and the contribution of protonation at the N3 of the Hoogsteen cytosine residue on the stability of various sequences of parallel triple helices having the general composition d[(A5G)-x-(T5C)-x-(T5C)] and d[(A4G2)-x-(T4C2)-x-(T4C2)], where x is the hexaethylene glycol linker, has been determined by NMR, ultraviolet melting and absorbance spectrophotometry. The apparent pK value, i.e. the pH at which the observable has changed by 50% of its range, was typically in the range 6 to 7. However, the NMR spectra unequivocally showed that the pK of the protonated cytosine residue must be at least 9.5 for internal positions. This is five units above the pK of the free nucleotide, and represents a free energy of stabilisation from protonation of >11.5 RT. The pK of terminal cytosine residues is much lower, in the range 6.2 to 7.2, accounting for a free energy of stabilisation from protonation of 3.6 to 6 RT. The van't Hoff enthalpies were determined for the dissociation of the protonated triplex into the duplex+strand, and for the duplex to strand transition. The mean value for the duplexes were 23 to 27 kJ mol-1 base-pair, and 25 to 30 kJ mol-1 for the triplexes containing internal CG.C+ triplets. Good agreement was obtained for the thermodynamic parameters by the different methods. Free energy differences for the transition between the protonated triplex and the duplex+protonated strand were calculated at 298 K. The DeltaG of stabilisation of an internal CG.C triplet compared with a terminal CG.C triplet was about 6 kJ mol-1 ; a similar stabilisation was observed for the triplexes containing two CG.C triplets compared with those containing a single CG.C triplet. The very large stabilisation from protonation is too large to be accounted for by a single hydrogen bond, and is likely to include contributions from electrostatic interactions of the positive charge with the phosphate backbone, and more favourable interactions between neighbouring bases owing to the very different electronic properties of the protonated C.
About this Structure
Full crystallographic information is available from OCA.
Reference
The contribution of cytosine protonation to the stability of parallel DNA triple helices., Asensio JL, Lane AN, Dhesi J, Bergqvist S, Brown T, J Mol Biol. 1998 Feb 6;275(5):811-22. PMID:9480771 Page seeded by OCA on Fri May 2 11:20:01 2008