4v1l

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 1: Line 1:
 +
==High resolution structure of a novel carbohydrate binding module from glycoside hydrolase family 9 (Cel9A) from Ruminococcus flavefaciens FD-1==
==High resolution structure of a novel carbohydrate binding module from glycoside hydrolase family 9 (Cel9A) from Ruminococcus flavefaciens FD-1==
<StructureSection load='4v1l' size='340' side='right' caption='[[4v1l]], [[Resolution|resolution]] 1.75&Aring;' scene=''>
<StructureSection load='4v1l' size='340' side='right' caption='[[4v1l]], [[Resolution|resolution]] 1.75&Aring;' scene=''>
Line 5: Line 6:
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=P6G:HEXAETHYLENE+GLYCOL'>P6G</scene>, <scene name='pdbligand=PG4:TETRAETHYLENE+GLYCOL'>PG4</scene>, <scene name='pdbligand=PGE:TRIETHYLENE+GLYCOL'>PGE</scene></td></tr>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=P6G:HEXAETHYLENE+GLYCOL'>P6G</scene>, <scene name='pdbligand=PG4:TETRAETHYLENE+GLYCOL'>PG4</scene>, <scene name='pdbligand=PGE:TRIETHYLENE+GLYCOL'>PGE</scene></td></tr>
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[4v17|4v17]], [[4v18|4v18]], [[4v1b|4v1b]], [[4v1i|4v1i]], [[4v1k|4v1k]]</td></tr>
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[4v17|4v17]], [[4v18|4v18]], [[4v1b|4v1b]], [[4v1i|4v1i]], [[4v1k|4v1k]]</td></tr>
-
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4v1l FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4v1l OCA], [http://pdbe.org/4v1l PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=4v1l RCSB], [http://www.ebi.ac.uk/pdbsum/4v1l PDBsum]</span></td></tr>
+
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4v1l FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4v1l OCA], [http://pdbe.org/4v1l PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=4v1l RCSB], [http://www.ebi.ac.uk/pdbsum/4v1l PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=4v1l ProSAT]</span></td></tr>
</table>
</table>
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
The breakdown of plant cell wall (PCW) glycans is an important biological and industrial process. Noncatalytic carbohydrate binding modules (CBMs) fulfill a critical targeting function in PCW depolymerization. Defining the portfolio of CBMs, the CBMome, of a PCW degrading system is central to understanding the mechanisms by which microbes depolymerize their target substrates. Ruminococcus flavefaciens, a major PCW degrading bacterium, assembles its catalytic apparatus into a large multienzyme complex, the cellulosome. Significantly, bioinformatic analyses of the R. flavefaciens cellulosome failed to identify a CBM predicted to bind to crystalline cellulose, a key feature of the CBMome of other PCW degrading systems. Here, high throughput screening of 177 protein modules of unknown function was used to determine the complete CBMome of R. flavefaciens The data identified six previously unidentified CBM families that targeted beta-glucans, beta-mannans, and the pectic polysaccharide homogalacturonan. The crystal structures of four CBMs, in conjunction with site-directed mutagenesis, provide insight into the mechanism of ligand recognition. In the CBMs that recognize beta-glucans and beta-mannans, differences in the conformation of conserved aromatic residues had a significant impact on the topology of the ligand binding cleft and thus ligand specificity. A cluster of basic residues in CBM77 confers calcium-independent recognition of homogalacturonan, indicating that the carboxylates of galacturonic acid are key specificity determinants. This report shows that the extended repertoire of proteins in the cellulosome of R. flavefaciens contributes to an extended CBMome that supports efficient PCW degradation in the absence of CBMs that specifically target crystalline cellulose.
 +
 +
Complexity of the Ruminococcus flavefaciens cellulosome reflects an expansion in glycan recognition.,Venditto I, Luis AS, Rydahl M, Schuckel J, Fernandes VO, Vidal-Melgosa S, Bule P, Goyal A, Pires VM, Dourado CG, Ferreira LM, Coutinho PM, Henrissat B, Knox JP, Basle A, Najmudin S, Gilbert HJ, Willats WG, Fontes CM Proc Natl Acad Sci U S A. 2016 Jun 13. pii: 201601558. PMID:27298375<ref>PMID:27298375</ref>
 +
 +
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 +
</div>
 +
<div class="pdbe-citations 4v1l" style="background-color:#fffaf0;"></div>
 +
== References ==
 +
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>

Revision as of 18:34, 12 July 2016

High resolution structure of a novel carbohydrate binding module from glycoside hydrolase family 9 (Cel9A) from Ruminococcus flavefaciens FD-1

4v1l, resolution 1.75Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools