Sandbox Reserved 1122
From Proteopedia
(Difference between revisions)
Line 16: | Line 16: | ||
However as expected, it affect the affinity with Bad and Bak proteins (from the Bcl-2 family). Indeed Bcl-2 isoform 1 shows to have a weaker affinity for Bad and Bak compared to isoform 2.<ref>[http://www.ncbi.nlm.nih.gov/pmc/articles/PMC30598/ Solution structure of the antiapoptotic protein bcl-2]</ref> | However as expected, it affect the affinity with Bad and Bak proteins (from the Bcl-2 family). Indeed Bcl-2 isoform 1 shows to have a weaker affinity for Bad and Bak compared to isoform 2.<ref>[http://www.ncbi.nlm.nih.gov/pmc/articles/PMC30598/ Solution structure of the antiapoptotic protein bcl-2]</ref> | ||
== Function == | == Function == | ||
+ | |||
+ | Bcl-2 is mainly found attached to the membranes through its C-terminal transmembrane domain. It can be anchored to nucleus, endoplasmic reticulum (ER) or mitochondrion. It normally acts as an antiapoptotic protein and the way it works depends on its localization. | ||
=== IP3R inhibition === | === IP3R inhibition === | ||
- | Bcl-2 localized at the | + | Bcl-2 localized at the ER membranes participates in the control of Ca2+ content and release. The inositol 1,4,5-trisphosphate receptor (IP3R) is the primary Ca2+ release channel localized in the ER. Its pro-apoptotic activity can be directly inhibited by the Bcl-2, homology domain 4 (BH4) being essential and sufficient for this effect. <scene name='71/719863/Scenelucas/1'>BH4</scene> comprises 20 amino acids (10-30) organized in alpha-helical structure which is required to inhibit IP3R. Residues K17, H20, Y21 and R26 participate in the inhibition of IP3R because they are very accessible and proximal in the secondary structure. <ref> [http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3795776/ Alpha-Helical Destabilization of the Bcl-2-BH4-Domain Peptide Abolishes Its Ability to Inhibit the IP3 Receptor]</ref> |
=== Regulation of the mitochondrial pathway of apoptosis === | === Regulation of the mitochondrial pathway of apoptosis === | ||
- | BH3-only proteins which belong to the Bcl-2 family activate pro-apoptotic proteins such as Bcl-2-associated X protein (Bax) or Bcl-2 antagonist/killer-1 (Bak) at the mitochondrion. When Bax or Bak are activated, they homo-oligomerize and form | + | BH3-only proteins which belong to the Bcl-2 family activate pro-apoptotic proteins such as Bcl-2-associated X protein (Bax) or Bcl-2 antagonist/killer-1 (Bak) at the mitochondrion. When Bax or Bak are activated, they homo-oligomerize and form pores in the outer mitochondrial membrane which are necessary for the pro-apoptotic molecules (including second mitochondria-derived activator of caspase and cytochrome c) to escape. Then cytochrome c leads to the activation of caspases which are actually proteases that degrade the key proteins of the cell. |
On the other hand, Bcl-2 may prevent the activation and homo-oligomerization of Bax and Bak thus blocking the cell death. This is achieved by sequestering BH3-only proteins or activated and monomeric Bax and Bak. <scene name='71/719863/Scenebh1/1'>BH1</scene> and <scene name='71/719863/Scenebh2/1'>BH2</scene> are essential for Bcl-2/Bax heterodimer formation. The conservation of each amino acid seems to be very important to this interaction. <ref>[http://www.nature.com.scd-rproxy.u-strasbg.fr/nature/journal/v369/n6478/pdf/369321a0.pdf BH1 and BH2 domains of Bcl-2 are required for inhibition of apoptosis and heterodimerization with Bax] </ref><ref>[http://jcs.biologists.org/content/122/4/437 Control of mitochondrial apoptosis by the Bcl-2 family] </ref> | On the other hand, Bcl-2 may prevent the activation and homo-oligomerization of Bax and Bak thus blocking the cell death. This is achieved by sequestering BH3-only proteins or activated and monomeric Bax and Bak. <scene name='71/719863/Scenebh1/1'>BH1</scene> and <scene name='71/719863/Scenebh2/1'>BH2</scene> are essential for Bcl-2/Bax heterodimer formation. The conservation of each amino acid seems to be very important to this interaction. <ref>[http://www.nature.com.scd-rproxy.u-strasbg.fr/nature/journal/v369/n6478/pdf/369321a0.pdf BH1 and BH2 domains of Bcl-2 are required for inhibition of apoptosis and heterodimerization with Bax] </ref><ref>[http://jcs.biologists.org/content/122/4/437 Control of mitochondrial apoptosis by the Bcl-2 family] </ref> | ||
Line 32: | Line 34: | ||
=== Regulation of proinflammatory caspase-1 activation === | === Regulation of proinflammatory caspase-1 activation === | ||
- | NALP1 is a member of a NLR-family proteins. Its function is to activate the members of the proinflammatory caspase family which participate in | + | NALP1 is a member of a NLR-family proteins. Its function is to activate the members of the proinflammatory caspase family which participate in cytokine activation pathway (especially caspase-1). The Bcl-2 loop regions between the BH3 and BH4 bind NALP1. This interaction is exclusively reserved to two members of Bcl-2 family: Bcl-XL and Bcl-2 itself because this interacting region is highly variable in Bcl-2 family. By binding to NALP1, Bcl-2 inhibits the inflammatory caspase activation. Hence, it protects cell from the stress. |
The posttranslational modifications found on the loops between BH3 and BH4 modify the anti-apoptotic activity of Bcl-2. Hence, the Bcl-2 binding to NALP1 can be affected by these modifications. <ref>[http://www.sciencedirect.com/science/article/pii/S0092867407003042 Bcl-2 and Bcl-XL Regulate Proinflammatory Caspase-1 Activation by Interaction with NALP1] </ref> | The posttranslational modifications found on the loops between BH3 and BH4 modify the anti-apoptotic activity of Bcl-2. Hence, the Bcl-2 binding to NALP1 can be affected by these modifications. <ref>[http://www.sciencedirect.com/science/article/pii/S0092867407003042 Bcl-2 and Bcl-XL Regulate Proinflammatory Caspase-1 Activation by Interaction with NALP1] </ref> | ||
Revision as of 20:57, 28 January 2016
This Sandbox is Reserved from 15/12/2015, through 15/06/2016 for use in the course "Structural Biology" taught by Bruno Kieffer at the University of Strasbourg, ESBS. This reservation includes Sandbox Reserved 1120 through Sandbox Reserved 1159. |
To get started:
More help: Help:Editing |
HUMAN BCL-2, ISOFORM1
|
References
- β Solution structure of the antiapoptotic protein bcl-2
- β Solution structure of the antiapoptotic protein bcl-2
- β Peptides derived from the transmembrane domain of Bcl-2 proteins as potential mitochondrial priming tools.
- β Solution structure of the antiapoptotic protein bcl-2
- β Alpha-Helical Destabilization of the Bcl-2-BH4-Domain Peptide Abolishes Its Ability to Inhibit the IP3 Receptor
- β BH1 and BH2 domains of Bcl-2 are required for inhibition of apoptosis and heterodimerization with Bax
- β Control of mitochondrial apoptosis by the Bcl-2 family
- β Differential Targeting of Prosurvival Bcl-2 Proteins by Their BH3-Only Ligands Allows Complementary Apoptotic Function
- β Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics
- β The Release of Cytochrome c from Mitochondria: A Primary Site for Bcl-2 Regulation of Apoptosis
- β Prevention of Apoptosis by Bcl-2: Release of Cytochrome c from Mitochondria Blocked
- β Bcl-2 and Bcl-XL Regulate Proinflammatory Caspase-1 Activation by Interaction with NALP1
- β BCL2 mutations are associated with increased risk of transformation and shortened survival in follicular lymphoma
- β Bcl-2 Suppresses DNA Repair by Enhancing c-Myc Transcriptional Activity
- β Bcl-2 family proteins and cancer
- β Bcl-2 family proteins and cancer