|
|
Line 1: |
Line 1: |
| + | {{Large structure}} |
| ==The structure of the antibiotic LINEZOLID bound to the large ribosomal subunit of HALOARCULA MARISMORTUI== | | ==The structure of the antibiotic LINEZOLID bound to the large ribosomal subunit of HALOARCULA MARISMORTUI== |
| <StructureSection load='3cpw' size='340' side='right' caption='[[3cpw]], [[Resolution|resolution]] 2.70Å' scene=''> | | <StructureSection load='3cpw' size='340' side='right' caption='[[3cpw]], [[Resolution|resolution]] 2.70Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[3cpw]] is a 30 chain structure with sequence from [http://en.wikipedia.org/wiki/Haloarcula_marismortui Haloarcula marismortui]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3CPW OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3CPW FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[3cpw]] is a 30 chain structure with sequence from [http://en.wikipedia.org/wiki/Haloarcula_marismortui Haloarcula marismortui] and [http://en.wikipedia.org/wiki/Haloarcula_marismortui Haloarcula marismortui]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3CPW OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3CPW FirstGlance]. <br> |
| </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=ACE:ACETYL+GROUP'>ACE</scene>, <scene name='pdbligand=CD:CADMIUM+ION'>CD</scene>, <scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=K:POTASSIUM+ION'>K</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=NA:SODIUM+ION'>NA</scene>, <scene name='pdbligand=SR:STRONTIUM+ION'>SR</scene>, <scene name='pdbligand=ZLD:N-{[(5S)-3-(3-FLUORO-4-MORPHOLIN-4-YLPHENYL)-2-OXO-1,3-OXAZOLIDIN-5-YL]METHYL}ACETAMIDE'>ZLD</scene></td></tr> | | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=ACE:ACETYL+GROUP'>ACE</scene>, <scene name='pdbligand=CD:CADMIUM+ION'>CD</scene>, <scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=K:POTASSIUM+ION'>K</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=NA:SODIUM+ION'>NA</scene>, <scene name='pdbligand=SR:STRONTIUM+ION'>SR</scene>, <scene name='pdbligand=ZLD:N-{[(5S)-3-(3-FLUORO-4-MORPHOLIN-4-YLPHENYL)-2-OXO-1,3-OXAZOLIDIN-5-YL]METHYL}ACETAMIDE'>ZLD</scene></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3cpw FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3cpw OCA], [http://pdbe.org/3cpw PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=3cpw RCSB], [http://www.ebi.ac.uk/pdbsum/3cpw PDBsum]</span></td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3cpw FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3cpw OCA], [http://pdbe.org/3cpw PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=3cpw RCSB], [http://www.ebi.ac.uk/pdbsum/3cpw PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=3cpw ProSAT]</span></td></tr> |
| </table> | | </table> |
| {{Large structure}} | | {{Large structure}} |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/RL23_HALMA RL23_HALMA]] Binds to a specific region on the 23S rRNA. Located at the polypeptide exit tunnel on the outside of the subunit.[HAMAP-Rule:MF_01369] [[http://www.uniprot.org/uniprot/RL5_HALMA RL5_HALMA]] This is 1 of 5 proteins that mediates the attachment of the 5S rRNA onto the large ribosomal subunit, stabilizing the orientation of adjacent RNA domains. Forms part of the central protuberance. Modeling places the A and P site tRNAs in close proximity to this protein; the 5S rRNA and some of its associated proteins might help stabilize positioning of ribosome-bound tRNAs. In the 70S ribosome it is thought to contact protein S13 of the 30S subunit (bridge B1b), connecting the 2 subunits; this bridge is implicated in subunit movement.[HAMAP-Rule:MF_01333_A] [[http://www.uniprot.org/uniprot/RL31_HALMA RL31_HALMA]] Binds to the 23S rRNA. Located at the polypeptide exit tunnel on the outside of the subunit.[HAMAP-Rule:MF_00410] [[http://www.uniprot.org/uniprot/RL18E_HALMA RL18E_HALMA]] Stabilizes the tertiary rRNA structure within the 23S rRNA domain (domain II) to which it binds.[HAMAP-Rule:MF_00329] [[http://www.uniprot.org/uniprot/RL19E_HALMA RL19E_HALMA]] Binds to the 23S rRNA. Located at the polypeptide exit tunnel on the outside of the subunit.[HAMAP-Rule:MF_01475] [[http://www.uniprot.org/uniprot/RL39_HALMA RL39_HALMA]] Binds to the 23S rRNA. Forms part of the polypeptide exit tunnel.[HAMAP-Rule:MF_00629] [[http://www.uniprot.org/uniprot/RL18_HALMA RL18_HALMA]] This is one of 5 proteins that mediate the attachment of the 5S rRNA onto the large ribosomal subunit, where it forms part of the central protuberance and stabilizes the orientation of adjacent RNA domains.[HAMAP-Rule:MF_01337_A] [[http://www.uniprot.org/uniprot/RL32_HALMA RL32_HALMA]] Binds to the 23S rRNA.[HAMAP-Rule:MF_00810] [[http://www.uniprot.org/uniprot/RL30_HALMA RL30_HALMA]] This is one of 5 proteins that mediate the attachment of the 5S rRNA onto the large ribosomal subunit, stabilizing the orientation of adjacent RNA domains.[HAMAP-Rule:MF_01371] [[http://www.uniprot.org/uniprot/RL37A_HALMA RL37A_HALMA]] Binds to the 23S rRNA.[HAMAP-Rule:MF_00327] [[http://www.uniprot.org/uniprot/RL15_HALMA RL15_HALMA]] Binds to the 23S rRNA.[HAMAP-Rule:MF_01341_A] [[http://www.uniprot.org/uniprot/RL22_HALMA RL22_HALMA]] This protein binds specifically to 23S rRNA. It makes multiple contacts with different domains of the 23S rRNA in the assembled 50S subunit and ribosome (By similarity).[HAMAP-Rule:MF_01331] Contacts all 6 domains of the 23S rRNA, helping stabilize their relative orientation. An extended beta-hairpin in the C-terminus forms part of the polypeptide exit tunnel, in which it helps forms a bend with protein L4, while most of the rest of the protein is located at the polypeptide exit tunnel on the outside of the subunit.[HAMAP-Rule:MF_01331] [[http://www.uniprot.org/uniprot/RL29_HALMA RL29_HALMA]] Stabilizes the tertiary rRNA structure within the 23S rRNA domain (domain I) to which it binds. Located at the polypeptide exit tunnel on the outside of the subunit.[HAMAP-Rule:MF_00374] [[http://www.uniprot.org/uniprot/RLA0_HALMA RLA0_HALMA]] Ribosomal protein L10e is the functional equivalent of E.coli protein L10.[HAMAP-Rule:MF_00280] [[http://www.uniprot.org/uniprot/RL44E_HALMA RL44E_HALMA]] Binds to the 23S rRNA. Binds deacetylated tRNA in the E site; when the tRNA binds a stretch of 7 amino acids are displaced to allow binding.[HAMAP-Rule:MF_01476] [[http://www.uniprot.org/uniprot/RL10_HALMA RL10_HALMA]] This is 1 of 5 proteins that mediate the attachment of the 5S rRNA onto the large ribosomal subunit, stabilizing the orientation of adjacent RNA domains. Modeling places the A and P site tRNAs in close proximity to this protein.[HAMAP-Rule:MF_00448] [[http://www.uniprot.org/uniprot/RL24_HALMA RL24_HALMA]] One of two assembly initiator proteins, it binds directly to the 5'-end of the 23S rRNA, where it nucleates assembly of the 50S subunit (By similarity).[HAMAP-Rule:MF_01326_A] Stabilizes the tertiary rRNA structure within the 23S rRNA domain (domain I) to which it binds. Located at the polypeptide exit tunnel on the outside of the subunit.[HAMAP-Rule:MF_01326_A] [[http://www.uniprot.org/uniprot/RL14_HALMA RL14_HALMA]] Forms part of two intersubunit bridges in the 70S ribosome (By similarity). Binds to 23S rRNA.[HAMAP-Rule:MF_01367] [[http://www.uniprot.org/uniprot/RL24E_HALMA RL24E_HALMA]] Binds to the 23S rRNA.[HAMAP-Rule:MF_00773] [[http://www.uniprot.org/uniprot/RL37_HALMA RL37_HALMA]] Binds to the 23S rRNA.[HAMAP-Rule:MF_00547] [[http://www.uniprot.org/uniprot/RL4_HALMA RL4_HALMA]] One of the primary rRNA binding proteins, this protein initially binds near the 5'-end of the 23S rRNA. It is important during the early stages of 50S assembly (By similarity).[HAMAP-Rule:MF_01328_A] Makes multiple contacts with different domains of the 23S rRNA in the assembled 50S subunit.[HAMAP-Rule:MF_01328_A] Forms part of the polypeptide exit tunnel, in which it helps forms a bend with protein L22. Contacts the macrolide antibiotic spiramycin in the polypeptide exit tunnel.[HAMAP-Rule:MF_01328_A] [[http://www.uniprot.org/uniprot/RL7A_HALMA RL7A_HALMA]] Multifunctional RNA-binding protein that recognizes the K-turn motif in ribosomal RNA, box H/ACA and box C/D sRNAs (By similarity).[HAMAP-Rule:MF_00326] [[http://www.uniprot.org/uniprot/RL13_HALMA RL13_HALMA]] This protein is one of the early assembly proteins of the 50S ribosomal subunit (By similarity). Binds to 23S rRNA.[HAMAP-Rule:MF_01366] [[http://www.uniprot.org/uniprot/RL6_HALMA RL6_HALMA]] This protein binds to the 23S rRNA, and is important in its secondary structure. It is located near the subunit interface in the base of the L7/L12 stalk, and near the tRNA binding site of the peptidyltransferase center.[HAMAP-Rule:MF_01365] [[http://www.uniprot.org/uniprot/RL2_HALMA RL2_HALMA]] One of the primary rRNA binding proteins. Required for association of the 30S and 50S subunits to form the 70S ribosome, for tRNA binding and peptide bond formation. It has been suggested to have peptidyltransferase activity; this is somewhat controversial. Makes several contacts with the 16S rRNA in the 70S ribosome (By similarity).[HAMAP-Rule:MF_01320_A] [[http://www.uniprot.org/uniprot/RL21_HALMA RL21_HALMA]] This is one of 5 proteins that mediate the attachment of the 5S rRNA onto the large ribosomal subunit, stabilizing the orientation of adjacent RNA domains.[HAMAP-Rule:MF_00369] [[http://www.uniprot.org/uniprot/RL3_HALMA RL3_HALMA]] One of the primary rRNA binding proteins, it binds directly near the 3'-end of the 23S rRNA, where it nucleates assembly of the 50S subunit (By similarity).[HAMAP-Rule:MF_01325_A] | + | [[http://www.uniprot.org/uniprot/RL13_HALMA RL13_HALMA]] This protein is one of the early assembly proteins of the 50S ribosomal subunit (By similarity). Binds to 23S rRNA.[HAMAP-Rule:MF_01366] [[http://www.uniprot.org/uniprot/RL24_HALMA RL24_HALMA]] One of two assembly initiator proteins, it binds directly to the 5'-end of the 23S rRNA, where it nucleates assembly of the 50S subunit (By similarity).[HAMAP-Rule:MF_01326_A] Stabilizes the tertiary rRNA structure within the 23S rRNA domain (domain I) to which it binds. Located at the polypeptide exit tunnel on the outside of the subunit.[HAMAP-Rule:MF_01326_A] [[http://www.uniprot.org/uniprot/RL6_HALMA RL6_HALMA]] This protein binds to the 23S rRNA, and is important in its secondary structure. It is located near the subunit interface in the base of the L7/L12 stalk, and near the tRNA binding site of the peptidyltransferase center.[HAMAP-Rule:MF_01365] [[http://www.uniprot.org/uniprot/RL32_HALMA RL32_HALMA]] Binds to the 23S rRNA.[HAMAP-Rule:MF_00810] [[http://www.uniprot.org/uniprot/RL19E_HALMA RL19E_HALMA]] Binds to the 23S rRNA. Located at the polypeptide exit tunnel on the outside of the subunit.[HAMAP-Rule:MF_01475] [[http://www.uniprot.org/uniprot/RL24E_HALMA RL24E_HALMA]] Binds to the 23S rRNA.[HAMAP-Rule:MF_00773] [[http://www.uniprot.org/uniprot/RL21_HALMA RL21_HALMA]] This is one of 5 proteins that mediate the attachment of the 5S rRNA onto the large ribosomal subunit, stabilizing the orientation of adjacent RNA domains.[HAMAP-Rule:MF_00369] [[http://www.uniprot.org/uniprot/RL44E_HALMA RL44E_HALMA]] Binds to the 23S rRNA. Binds deacetylated tRNA in the E site; when the tRNA binds a stretch of 7 amino acids are displaced to allow binding.[HAMAP-Rule:MF_01476] [[http://www.uniprot.org/uniprot/RL29_HALMA RL29_HALMA]] Stabilizes the tertiary rRNA structure within the 23S rRNA domain (domain I) to which it binds. Located at the polypeptide exit tunnel on the outside of the subunit.[HAMAP-Rule:MF_00374] [[http://www.uniprot.org/uniprot/RL18E_HALMA RL18E_HALMA]] Stabilizes the tertiary rRNA structure within the 23S rRNA domain (domain II) to which it binds.[HAMAP-Rule:MF_00329] [[http://www.uniprot.org/uniprot/RL15_HALMA RL15_HALMA]] Binds to the 23S rRNA.[HAMAP-Rule:MF_01341_A] [[http://www.uniprot.org/uniprot/RL39_HALMA RL39_HALMA]] Binds to the 23S rRNA. Forms part of the polypeptide exit tunnel.[HAMAP-Rule:MF_00629] [[http://www.uniprot.org/uniprot/RL37A_HALMA RL37A_HALMA]] Binds to the 23S rRNA.[HAMAP-Rule:MF_00327] [[http://www.uniprot.org/uniprot/RL31_HALMA RL31_HALMA]] Binds to the 23S rRNA. Located at the polypeptide exit tunnel on the outside of the subunit.[HAMAP-Rule:MF_00410] [[http://www.uniprot.org/uniprot/RL5_HALMA RL5_HALMA]] This is 1 of 5 proteins that mediates the attachment of the 5S rRNA onto the large ribosomal subunit, stabilizing the orientation of adjacent RNA domains. Forms part of the central protuberance. Modeling places the A and P site tRNAs in close proximity to this protein; the 5S rRNA and some of its associated proteins might help stabilize positioning of ribosome-bound tRNAs. In the 70S ribosome it is thought to contact protein S13 of the 30S subunit (bridge B1b), connecting the 2 subunits; this bridge is implicated in subunit movement.[HAMAP-Rule:MF_01333_A] [[http://www.uniprot.org/uniprot/RL37_HALMA RL37_HALMA]] Binds to the 23S rRNA.[HAMAP-Rule:MF_00547] [[http://www.uniprot.org/uniprot/RL2_HALMA RL2_HALMA]] One of the primary rRNA binding proteins. Required for association of the 30S and 50S subunits to form the 70S ribosome, for tRNA binding and peptide bond formation. It has been suggested to have peptidyltransferase activity; this is somewhat controversial. Makes several contacts with the 16S rRNA in the 70S ribosome (By similarity).[HAMAP-Rule:MF_01320_A] [[http://www.uniprot.org/uniprot/RLA0_HALMA RLA0_HALMA]] Ribosomal protein L10e is the functional equivalent of E.coli protein L10.[HAMAP-Rule:MF_00280] [[http://www.uniprot.org/uniprot/RL14_HALMA RL14_HALMA]] Forms part of two intersubunit bridges in the 70S ribosome (By similarity). Binds to 23S rRNA.[HAMAP-Rule:MF_01367] [[http://www.uniprot.org/uniprot/RL23_HALMA RL23_HALMA]] Binds to a specific region on the 23S rRNA. Located at the polypeptide exit tunnel on the outside of the subunit.[HAMAP-Rule:MF_01369] [[http://www.uniprot.org/uniprot/RL18_HALMA RL18_HALMA]] This is one of 5 proteins that mediate the attachment of the 5S rRNA onto the large ribosomal subunit, where it forms part of the central protuberance and stabilizes the orientation of adjacent RNA domains.[HAMAP-Rule:MF_01337_A] [[http://www.uniprot.org/uniprot/RL7A_HALMA RL7A_HALMA]] Multifunctional RNA-binding protein that recognizes the K-turn motif in ribosomal RNA, box H/ACA and box C/D sRNAs (By similarity).[HAMAP-Rule:MF_00326] [[http://www.uniprot.org/uniprot/RL3_HALMA RL3_HALMA]] One of the primary rRNA binding proteins, it binds directly near the 3'-end of the 23S rRNA, where it nucleates assembly of the 50S subunit (By similarity).[HAMAP-Rule:MF_01325_A] [[http://www.uniprot.org/uniprot/RL30_HALMA RL30_HALMA]] This is one of 5 proteins that mediate the attachment of the 5S rRNA onto the large ribosomal subunit, stabilizing the orientation of adjacent RNA domains.[HAMAP-Rule:MF_01371] [[http://www.uniprot.org/uniprot/RL22_HALMA RL22_HALMA]] This protein binds specifically to 23S rRNA. It makes multiple contacts with different domains of the 23S rRNA in the assembled 50S subunit and ribosome (By similarity).[HAMAP-Rule:MF_01331] Contacts all 6 domains of the 23S rRNA, helping stabilize their relative orientation. An extended beta-hairpin in the C-terminus forms part of the polypeptide exit tunnel, in which it helps forms a bend with protein L4, while most of the rest of the protein is located at the polypeptide exit tunnel on the outside of the subunit.[HAMAP-Rule:MF_01331] [[http://www.uniprot.org/uniprot/RL10_HALMA RL10_HALMA]] This is 1 of 5 proteins that mediate the attachment of the 5S rRNA onto the large ribosomal subunit, stabilizing the orientation of adjacent RNA domains. Modeling places the A and P site tRNAs in close proximity to this protein.[HAMAP-Rule:MF_00448] [[http://www.uniprot.org/uniprot/RL4_HALMA RL4_HALMA]] One of the primary rRNA binding proteins, this protein initially binds near the 5'-end of the 23S rRNA. It is important during the early stages of 50S assembly (By similarity).[HAMAP-Rule:MF_01328_A] Makes multiple contacts with different domains of the 23S rRNA in the assembled 50S subunit.[HAMAP-Rule:MF_01328_A] Forms part of the polypeptide exit tunnel, in which it helps forms a bend with protein L22. Contacts the macrolide antibiotic spiramycin in the polypeptide exit tunnel.[HAMAP-Rule:MF_01328_A] |
| == Evolutionary Conservation == | | == Evolutionary Conservation == |
| [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
| Check<jmol> | | Check<jmol> |
| <jmolCheckbox> | | <jmolCheckbox> |
- | <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/cp/3cpw_consurf.spt"</scriptWhenChecked> | + | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/cp/3cpw_consurf.spt"</scriptWhenChecked> |
| <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> |
| <text>to colour the structure by Evolutionary Conservation</text> | | <text>to colour the structure by Evolutionary Conservation</text> |
| Structural highlights
3cpw is a 30 chain structure with sequence from Haloarcula marismortui and Haloarcula marismortui. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
| Ligands: | , , , , , , , |
Resources: | FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT |
Warning: this is a large structure, and loading might take a long time or not happen at all.
Function
[RL13_HALMA] This protein is one of the early assembly proteins of the 50S ribosomal subunit (By similarity). Binds to 23S rRNA.[HAMAP-Rule:MF_01366] [RL24_HALMA] One of two assembly initiator proteins, it binds directly to the 5'-end of the 23S rRNA, where it nucleates assembly of the 50S subunit (By similarity).[HAMAP-Rule:MF_01326_A] Stabilizes the tertiary rRNA structure within the 23S rRNA domain (domain I) to which it binds. Located at the polypeptide exit tunnel on the outside of the subunit.[HAMAP-Rule:MF_01326_A] [RL6_HALMA] This protein binds to the 23S rRNA, and is important in its secondary structure. It is located near the subunit interface in the base of the L7/L12 stalk, and near the tRNA binding site of the peptidyltransferase center.[HAMAP-Rule:MF_01365] [RL32_HALMA] Binds to the 23S rRNA.[HAMAP-Rule:MF_00810] [RL19E_HALMA] Binds to the 23S rRNA. Located at the polypeptide exit tunnel on the outside of the subunit.[HAMAP-Rule:MF_01475] [RL24E_HALMA] Binds to the 23S rRNA.[HAMAP-Rule:MF_00773] [RL21_HALMA] This is one of 5 proteins that mediate the attachment of the 5S rRNA onto the large ribosomal subunit, stabilizing the orientation of adjacent RNA domains.[HAMAP-Rule:MF_00369] [RL44E_HALMA] Binds to the 23S rRNA. Binds deacetylated tRNA in the E site; when the tRNA binds a stretch of 7 amino acids are displaced to allow binding.[HAMAP-Rule:MF_01476] [RL29_HALMA] Stabilizes the tertiary rRNA structure within the 23S rRNA domain (domain I) to which it binds. Located at the polypeptide exit tunnel on the outside of the subunit.[HAMAP-Rule:MF_00374] [RL18E_HALMA] Stabilizes the tertiary rRNA structure within the 23S rRNA domain (domain II) to which it binds.[HAMAP-Rule:MF_00329] [RL15_HALMA] Binds to the 23S rRNA.[HAMAP-Rule:MF_01341_A] [RL39_HALMA] Binds to the 23S rRNA. Forms part of the polypeptide exit tunnel.[HAMAP-Rule:MF_00629] [RL37A_HALMA] Binds to the 23S rRNA.[HAMAP-Rule:MF_00327] [RL31_HALMA] Binds to the 23S rRNA. Located at the polypeptide exit tunnel on the outside of the subunit.[HAMAP-Rule:MF_00410] [RL5_HALMA] This is 1 of 5 proteins that mediates the attachment of the 5S rRNA onto the large ribosomal subunit, stabilizing the orientation of adjacent RNA domains. Forms part of the central protuberance. Modeling places the A and P site tRNAs in close proximity to this protein; the 5S rRNA and some of its associated proteins might help stabilize positioning of ribosome-bound tRNAs. In the 70S ribosome it is thought to contact protein S13 of the 30S subunit (bridge B1b), connecting the 2 subunits; this bridge is implicated in subunit movement.[HAMAP-Rule:MF_01333_A] [RL37_HALMA] Binds to the 23S rRNA.[HAMAP-Rule:MF_00547] [RL2_HALMA] One of the primary rRNA binding proteins. Required for association of the 30S and 50S subunits to form the 70S ribosome, for tRNA binding and peptide bond formation. It has been suggested to have peptidyltransferase activity; this is somewhat controversial. Makes several contacts with the 16S rRNA in the 70S ribosome (By similarity).[HAMAP-Rule:MF_01320_A] [RLA0_HALMA] Ribosomal protein L10e is the functional equivalent of E.coli protein L10.[HAMAP-Rule:MF_00280] [RL14_HALMA] Forms part of two intersubunit bridges in the 70S ribosome (By similarity). Binds to 23S rRNA.[HAMAP-Rule:MF_01367] [RL23_HALMA] Binds to a specific region on the 23S rRNA. Located at the polypeptide exit tunnel on the outside of the subunit.[HAMAP-Rule:MF_01369] [RL18_HALMA] This is one of 5 proteins that mediate the attachment of the 5S rRNA onto the large ribosomal subunit, where it forms part of the central protuberance and stabilizes the orientation of adjacent RNA domains.[HAMAP-Rule:MF_01337_A] [RL7A_HALMA] Multifunctional RNA-binding protein that recognizes the K-turn motif in ribosomal RNA, box H/ACA and box C/D sRNAs (By similarity).[HAMAP-Rule:MF_00326] [RL3_HALMA] One of the primary rRNA binding proteins, it binds directly near the 3'-end of the 23S rRNA, where it nucleates assembly of the 50S subunit (By similarity).[HAMAP-Rule:MF_01325_A] [RL30_HALMA] This is one of 5 proteins that mediate the attachment of the 5S rRNA onto the large ribosomal subunit, stabilizing the orientation of adjacent RNA domains.[HAMAP-Rule:MF_01371] [RL22_HALMA] This protein binds specifically to 23S rRNA. It makes multiple contacts with different domains of the 23S rRNA in the assembled 50S subunit and ribosome (By similarity).[HAMAP-Rule:MF_01331] Contacts all 6 domains of the 23S rRNA, helping stabilize their relative orientation. An extended beta-hairpin in the C-terminus forms part of the polypeptide exit tunnel, in which it helps forms a bend with protein L4, while most of the rest of the protein is located at the polypeptide exit tunnel on the outside of the subunit.[HAMAP-Rule:MF_01331] [RL10_HALMA] This is 1 of 5 proteins that mediate the attachment of the 5S rRNA onto the large ribosomal subunit, stabilizing the orientation of adjacent RNA domains. Modeling places the A and P site tRNAs in close proximity to this protein.[HAMAP-Rule:MF_00448] [RL4_HALMA] One of the primary rRNA binding proteins, this protein initially binds near the 5'-end of the 23S rRNA. It is important during the early stages of 50S assembly (By similarity).[HAMAP-Rule:MF_01328_A] Makes multiple contacts with different domains of the 23S rRNA in the assembled 50S subunit.[HAMAP-Rule:MF_01328_A] Forms part of the polypeptide exit tunnel, in which it helps forms a bend with protein L22. Contacts the macrolide antibiotic spiramycin in the polypeptide exit tunnel.[HAMAP-Rule:MF_01328_A]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
The oxazolidinone antibacterials target the 50S subunit of prokaryotic ribosomes. To gain insight into their mechanism of action, the crystal structure of the canonical oxazolidinone, linezolid, has been determined bound to the Haloarcula marismortui 50S subunit. Linezolid binds the 50S A-site, near the catalytic center, which suggests that inhibition involves competition with incoming A-site substrates. These results provide a structural basis for the discovery of improved oxazolidinones active against emerging drug-resistant clinical strains.
Crystal structure of the oxazolidinone antibiotic linezolid bound to the 50S ribosomal subunit.,Ippolito JA, Kanyo ZF, Wang D, Franceschi FJ, Moore PB, Steitz TA, Duffy EM J Med Chem. 2008 Jun 26;51(12):3353-6. PMID:18494460[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Ippolito JA, Kanyo ZF, Wang D, Franceschi FJ, Moore PB, Steitz TA, Duffy EM. Crystal structure of the oxazolidinone antibiotic linezolid bound to the 50S ribosomal subunit. J Med Chem. 2008 Jun 26;51(12):3353-6. PMID:18494460 doi:10.1021/jm800379d
|