We apologize for Proteopedia being slow to respond. For the past two years, a new implementation of Proteopedia has been being built. Soon, it will replace this 18-year old system. All existing content will be moved to the new system at a date that will be announced here.
Sandbox Wabash 10 Fumarase
From Proteopedia
(Difference between revisions)
| Line 7: | Line 7: | ||
=='''The Debated Fumarase C Active Site'''== | =='''The Debated Fumarase C Active Site'''== | ||
| - | The overall catalytic mechanism of Fumarase drives fumarate formation from L-malate. A water molecule is removed from L-malate to generate fumarate. The first step of this is through a proton removal, and followed by OH- ion removal. The debate for the active site of fumarase involves two active sites that both contain carboxylic acid binding sites; the A and B site. Biochemical data suggests that the Histidine side chain is one of the bases participating in the catalytic reaction <ref name= "Weaver">PMID:9098893</ref> In order to determine which is the actual active site of fumarase, Weaver <ref name= "Weaver">PMID:9098893</ref> mutated the Histidine side chain, and created two fumarase mutants H129N and H188N. The <scene name='72/726383/His188/1'>HIS188 residue</scene> represents the location of the targeted mutation within site A, and <scene name='72/726383/His_129/1'>HIS129</scene>represents the location of the mutated residue in site B. These mutants were developed to hinder the catalytic activity of fumarase. Data was gathered from crystal structure analyses, and activity measurements to confirm the active site <ref name= "Weaver">PMID:9098893</ref>. Through a nickel agarose column | + | The overall catalytic mechanism of Fumarase drives fumarate formation from L-malate. A water molecule is removed from L-malate to generate fumarate. The first step of this is through a proton removal, and followed by OH- ion removal. The debate for the active site of fumarase involves two active sites that both contain carboxylic acid binding sites; the A and B site. Biochemical data suggests that the Histidine side chain is one of the bases participating in the catalytic reaction <ref name= "Weaver">PMID:9098893</ref> In order to determine which is the actual active site of fumarase, Weaver <ref name= "Weaver">PMID:9098893</ref> mutated the Histidine side chain, and created two fumarase mutants H129N and H188N. The <scene name='72/726383/His188/1'>HIS188 residue</scene> represents the location of the targeted mutation within site A, and <scene name='72/726383/His_129/1'>HIS129</scene> represents the location of the mutated residue in site B. The B-site is formed from a single subunit of the tetramer and includes atoms from residue R126, H129, N131, and D132 <ref name= "Weaver">PMID:9098893</ref>. H129 was mutated because it is the only potential side chain that could serve as a catalytic base in the B-site. These mutants were developed to hinder the catalytic activity of fumarase. Data was gathered from crystal structure analyses, and activity measurements to confirm the active site <ref name= "Weaver">PMID:9098893</ref>. Through a nickel agarose column and subsequent SDS-PAGE, they purified the histidine tagged protein <ref name= "Weaver">PMID:9098893</ref>. Subsequently, they calculated the specific activities of the wild-type fumarase and the histidine mutants H129N and H188N. Weaver observed that the H188N mutation drastically affected the catalytic reaction, showing an avg activity of 9.62 μ/mL as opposed to the wild type with 4920.0 μ/mL and the H129N mutant with 2080 μ/mL <ref name= "Weaver">PMID:9098893</ref>.Supporting his hypothesis that site A was the active site, by changing H188 residue they dramatically affected the catalytic activity of the enzyme <ref name= "Weaver">PMID:9098893</ref>. Additionally, this was further supported by eliminating the HIS188 from fumarase, in the absence of HIS188 effectively reduced binding of citrate and they also note that the A-site (active site) in the structure of H129N was unchanged by a mutation at H129 residue <ref name= "Weaver">PMID:9098893</ref>. |
<scene name='72/726383/H188n/2'>TextToBeDisplayed</scene> | <scene name='72/726383/H188n/2'>TextToBeDisplayed</scene> | ||
Revision as of 05:01, 29 February 2016
Fumarase
| |||||||||||
References
- ↑ 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Weaver T, Lees M, Banaszak L. Mutations of fumarase that distinguish between the active site and a nearby dicarboxylic acid binding site. Protein Sci. 1997 Apr;6(4):834-42. PMID:9098893
Weaver T, Lees M, Banaszak L. Mutations of fumarase that distinguish between the active site and a nearby dicarboxylic acid binding site. Protein Sci. 1997 Apr;6(4):834-42. PMID:9098893[1]
