Sandbox Reserved 426
From Proteopedia
(Difference between revisions)
Line 10: | Line 10: | ||
==Introduction== | ==Introduction== | ||
- | The intercalation of DNA and drug compounds has been studied thoroughly; in this case the nucleotide d(CGTACG) was complexed with an anthraquinone derivative. This derivative, 1,5-bis[3-(diethylamino)propionamido]anthracene-9,10-dione, provided researchers with the information needed to solve <scene name='48/483883/Rainbow_sheet/1'>the structure of the complex</scene> using X-Ray crystallography. Along with the structure, the important forces involved in binding were analyzed and described as heavily reliant on cations. Furthermore, the binding site seems to be specific to anthracene and similar molecules. Therefore, the potential for drug compounds to be carried by this nucleotide complex requires further research. | + | The intercalation of DNA and drug compounds has been studied thoroughly; in this case the nucleotide d(CGTACG) was complexed with an anthraquinone derivative. This derivative, 1,5-bis[3-(diethylamino)propionamido]anthracene-9,10-dione, provided researchers with the information needed to solve <scene name='48/483883/Rainbow_sheet/1'>the structure of the complex</scene> using X-Ray crystallography. Along with the structure, the important forces involved in binding were analyzed and described as heavily reliant on cations. Furthermore, the binding site seems to be specific to anthracene and similar molecules. Therefore, the potential for drug compounds to be carried by this nucleotide complex requires further research. |
- | + | ||
- | + | ||
- | + | ||
==Overall Structure== | ==Overall Structure== | ||
Line 26: | Line 23: | ||
==Additional Features== | ==Additional Features== | ||
- | In <scene name='48/483883/Mikescene/1'>this depiction</scene>, one can see that the anthraquinone derivative is located between the backbones and base pairs of DNA. The drug is squeezed or intercalated between the nucleotides <scene name='48/483883/Mikescene/3'>shown in red</scene>. In the human body, the <scene name='48/483883/Mikescene/2'>nucleotide in gold</scene> would also be interacting with the drug shown in black, but in order for this complex to be studied, a short segment of DNA had to be used. Consequently the gold nucleotide is involved in abnormal molecular interactions and is out of place. This intercalation interrupts the function of taq polymerase and telomerase. Taq polymerase is in part responsible for the replication of DNA and consequently, cell replication. Telomeres are repeating sections of non-coding DNA that protect the ends of coding sections of DNA from degradation. Each time a cell divides, telomeres shorten. Over time, telomeres shorten to the point of disappearance, causing DNA degradation and cell death. Telomerase builds up these protective sections of DNA. Cancer is characterized as an uncontrolled rate of cell growth. By inhibiting the replication DNA and the construction of protective telomeres, this drug serves to slow and stop cancerous cell growth. | + | In <scene name='48/483883/Mikescene/1'>this depiction</scene>, one can see that the anthraquinone derivative is located between the backbones and base pairs of DNA. The drug is squeezed or intercalated between the nucleotides <scene name='48/483883/Mikescene/3'>shown in red</scene>. In the human body, the <scene name='48/483883/Mikescene/2'>nucleotide in gold</scene> would also be interacting with the drug shown in black, but in order for this complex to be studied, a short segment of DNA had to be used. Consequently the gold nucleotide is involved in abnormal molecular interactions and is out of place. This intercalation interrupts the function of taq polymerase and telomerase.<ref>Human Telomerase Inhibition by Regioisomeric Disubstituted Amidoanthracene-9,10-diones |
+ | Philip J. Perry,†, Anthony P. Reszka,†, Alexis A. Wood,†, Martin A. Read,†, Sharon M. Gowan,‡, Harvinder S. Dosanjh,†, John O. Trent,†,§, Terence C. Jenkins,†,‖, Lloyd R. Kelland,‡ and, and Stephen Neidle*,† | ||
+ | Journal of Medicinal Chemistry 1998 41 (24), 4873-4884 | ||
+ | DOI: 10.1021/jm981067o</ref> Taq polymerase is in part responsible for the replication of DNA and consequently, cell replication. Telomeres are repeating sections of non-coding DNA that protect the ends of coding sections of DNA from degradation. Each time a cell divides, telomeres shorten. Over time, telomeres shorten to the point of disappearance, causing DNA degradation and cell death. Telomerase builds up these protective sections of DNA. Cancer is characterized as an uncontrolled rate of cell growth. By inhibiting the replication DNA and the construction of protective telomeres, this drug serves to slow and stop cancerous cell growth. | ||
Line 51: | Line 51: | ||
==References== | ==References== | ||
<references/> | <references/> | ||
- | Human Telomerase Inhibition by Regioisomeric Disubstituted Amidoanthracene-9,10-diones | ||
- | Philip J. Perry,†, Anthony P. Reszka,†, Alexis A. Wood,†, Martin A. Read,†, Sharon M. Gowan,‡, Harvinder S. Dosanjh,†, John O. Trent,†,§, Terence C. Jenkins,†,‖, Lloyd R. Kelland,‡ and, and Stephen Neidle*,† | ||
- | Journal of Medicinal Chemistry 1998 41 (24), 4873-4884 | ||
- | DOI: 10.1021/jm981067o |
Revision as of 05:01, 10 April 2016
This Sandbox is Reserved from January 19, 2016, through August 31, 2016 for use for Proteopedia Team Projects by the class Chemistry 423 Biochemistry for Chemists taught by Lynmarie K Thompson at University of Massachusetts Amherst, USA. This reservation includes Sandbox Reserved 425 through Sandbox Reserved 439. |
Structure of Oligonucleotide/Drug complex (1xcs)[1]
by Michael Beauregard, Annie Burton, Jianlong Li, Daniel Marco, and Nathaneal Park
Student Projects for UMass Chemistry 423 Spring 2016
|