5g0r

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
m (Protected "5g0r" [edit=sysop:move=sysop])
Line 11: Line 11:
== Function ==
== Function ==
[[http://www.uniprot.org/uniprot/MCRA_METTM MCRA_METTM]] Reduction of methyl-coenzyme M (2-(methylthio) ethanesulfonic acid) with 7-mercaptoheptanoylthreonine phosphate to methane and a heterodisulfide. [[http://www.uniprot.org/uniprot/MCRG_METTM MCRG_METTM]] Reduction of methyl-coenzyme M (2-(methylthio) ethanesulfonic acid) with 7-mercaptoheptanoylthreonine phosphate to methane and a heterodisulfide. [[http://www.uniprot.org/uniprot/MCRB_METTM MCRB_METTM]] Reduction of methyl-coenzyme M (2-(methylthio) ethanesulfonic acid) with 7-mercaptoheptanoylthreonine phosphate to methane and a heterodisulfide.
[[http://www.uniprot.org/uniprot/MCRA_METTM MCRA_METTM]] Reduction of methyl-coenzyme M (2-(methylthio) ethanesulfonic acid) with 7-mercaptoheptanoylthreonine phosphate to methane and a heterodisulfide. [[http://www.uniprot.org/uniprot/MCRG_METTM MCRG_METTM]] Reduction of methyl-coenzyme M (2-(methylthio) ethanesulfonic acid) with 7-mercaptoheptanoylthreonine phosphate to methane and a heterodisulfide. [[http://www.uniprot.org/uniprot/MCRB_METTM MCRB_METTM]] Reduction of methyl-coenzyme M (2-(methylthio) ethanesulfonic acid) with 7-mercaptoheptanoylthreonine phosphate to methane and a heterodisulfide.
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
Ruminants, such as cows, sheep, and goats, predominantly ferment in their rumen plant material to acetate, propionate, butyrate, CO2, and methane. Whereas the short fatty acids are absorbed and metabolized by the animals, the greenhouse gas methane escapes via eructation and breathing of the animals into the atmosphere. Along with the methane, up to 12% of the gross energy content of the feedstock is lost. Therefore, our recent report has raised interest in 3-nitrooxypropanol (3-NOP), which when added to the feed of ruminants in milligram amounts persistently reduces enteric methane emissions from livestock without apparent negative side effects [Hristov AN, et al. (2015) Proc Natl Acad Sci USA 112(34):10663-10668]. We now show with the aid of in silico, in vitro, and in vivo experiments that 3-NOP specifically targets methyl-coenzyme M reductase (MCR). The nickel enzyme, which is only active when its Ni ion is in the +1 oxidation state, catalyzes the methane-forming step in the rumen fermentation. Molecular docking suggested that 3-NOP preferably binds into the active site of MCR in a pose that places its reducible nitrate group in electron transfer distance to Ni(I). With purified MCR, we found that 3-NOP indeed inactivates MCR at micromolar concentrations by oxidation of its active site Ni(I). Concomitantly, the nitrate ester is reduced to nitrite, which also inactivates MCR at micromolar concentrations by oxidation of Ni(I). Using pure cultures, 3-NOP is demonstrated to inhibit growth of methanogenic archaea at concentrations that do not affect the growth of nonmethanogenic bacteria in the rumen.
 +
 +
Mode of action uncovered for the specific reduction of methane emissions from ruminants by the small molecule 3-nitrooxypropanol.,Duin EC, Wagner T, Shima S, Prakash D, Cronin B, Yanez-Ruiz DR, Duval S, Rumbeli R, Stemmler RT, Thauer RK, Kindermann M Proc Natl Acad Sci U S A. 2016 May 2. pii: 201600298. PMID:27140643<ref>PMID:27140643</ref>
 +
 +
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 +
</div>
 +
<div class="pdbe-citations 5g0r" style="background-color:#fffaf0;"></div>
 +
== References ==
 +
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>

Revision as of 08:14, 1 June 2016

METHYL-COENZYME M REDUCTASE I FROM METHANOTHERMOBACTER MARBURGENSIS EXPOSED TO 3-NITROOXYPROPANOL

5g0r, resolution 1.25Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools