5fu4
From Proteopedia
(Difference between revisions)
| Line 10: | Line 10: | ||
<div style="background-color:#fffaf0;"> | <div style="background-color:#fffaf0;"> | ||
== Publication Abstract from PubMed == | == Publication Abstract from PubMed == | ||
| - | + | Molecular mechanisms underlying the repair of nitrosylated [Fe-S] clusters by the microbial protein YtfE remain poorly understood. The X-ray crystal structure of YtfE, in combination with EPR, magnetic circular dichroism (MCD), UV, and 17 O-labeling electron spin echo envelope modulation measurements, show that each iron of the oxo-bridged FeII -FeIII diiron core is coordinatively unsaturated with each iron bound to two bridging carboxylates and two terminal histidines in addition to an oxo-bridge. Structural analysis reveals that there are two solvent-accessible tunnels, both of which converge to the diiron center and are critical for capturing substrates. The reactivity of the reduced-form FeII -FeII YtfE toward nitric oxide demonstrates that the prerequisite for N2 O production requires the two iron sites to be nitrosylated simultaneously. Specifically, the nitrosylation of the two iron sites prior to their reductive coupling to produce N2 O is cooperative. This result suggests that, in addition to any repair of iron centers (RIC) activity, YtfE acts as an NO-trapping scavenger to promote the NO to N2 O transformation under low NO flux, which precedes nitrosative stress. | |
| - | + | Crystal Structure Analysis of the Repair of Iron Centers Protein YtfE and Its Interaction with NO.,Lo FC, Hsieh CC, Maestre-Reyna M, Chen CY, Ko TP, Horng YC, Lai YC, Chiang YW, Chou CM, Chiang CH, Huang WN, Lin YH, Bohle DS, Liaw WF Chemistry. 2016 Jun 1. doi: 10.1002/chem.201600990. PMID:27246459<ref>PMID:27246459</ref> | |
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
Revision as of 11:56, 14 July 2016
The complexity of the Ruminococcus flavefaciens cellulosome reflects an expansion in glycan recognition
| |||||||||||
