|
|
| Line 1: |
Line 1: |
| | | | |
| | ==Crystal structure of Naa10 (Ard1) bound to AcCoA== | | ==Crystal structure of Naa10 (Ard1) bound to AcCoA== |
| - | <StructureSection load='4kvx' size='340' side='right' caption='[[4kvx]], [[Resolution|resolution]] 2.00Å' scene=''> | + | <StructureSection load='4kvx' size='340' side='right'caption='[[4kvx]], [[Resolution|resolution]] 2.00Å' scene=''> |
| | == Structural highlights == | | == Structural highlights == |
| - | <table><tr><td colspan='2'>[[4kvx]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Fission_yeast Fission yeast]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4KVX OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4KVX FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[4kvx]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Schizosaccharomyces_pombe_972h- Schizosaccharomyces pombe 972h-]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4KVX OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4KVX FirstGlance]. <br> |
| - | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=ACO:ACETYL+COENZYME+*A'>ACO</scene></td></tr> | + | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ACO:ACETYL+COENZYME+*A'>ACO</scene>, <scene name='pdbligand=MSE:SELENOMETHIONINE'>MSE</scene></td></tr> |
| - | <tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=MSE:SELENOMETHIONINE'>MSE</scene></td></tr>
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4kvx FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4kvx OCA], [https://pdbe.org/4kvx PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4kvx RCSB], [https://www.ebi.ac.uk/pdbsum/4kvx PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4kvx ProSAT]</span></td></tr> |
| - | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[4kvm|4kvm]], [[4kvo|4kvo]]</td></tr>
| + | |
| - | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">ard1, SPAC15E1.08 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=284812 Fission yeast])</td></tr>
| + | |
| - | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Peptide_alpha-N-acetyltransferase Peptide alpha-N-acetyltransferase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.3.1.88 2.3.1.88] </span></td></tr>
| + | |
| - | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4kvx FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4kvx OCA], [http://pdbe.org/4kvx PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=4kvx RCSB], [http://www.ebi.ac.uk/pdbsum/4kvx PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=4kvx ProSAT]</span></td></tr> | + | |
| | </table> | | </table> |
| | == Function == | | == Function == |
| - | [[http://www.uniprot.org/uniprot/ARD1_SCHPO ARD1_SCHPO]] Catalytic component of the NatA N-terminal acetyltransferase, which catalyzes acetylation of proteins beginning with Met-Ser, Met-Gly and Met-Ala. N-acetylation plays a role in normal eukaryotic translation and processing, protect against proteolytic degradation and protein turnover (By similarity). | + | [https://www.uniprot.org/uniprot/ARD1_SCHPO ARD1_SCHPO] Catalytic component of the NatA N-terminal acetyltransferase, which catalyzes acetylation of proteins beginning with Met-Ser, Met-Gly and Met-Ala. N-acetylation plays a role in normal eukaryotic translation and processing, protect against proteolytic degradation and protein turnover (By similarity). |
| | <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| | == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
| Line 26: |
Line 22: |
| | __TOC__ | | __TOC__ |
| | </StructureSection> | | </StructureSection> |
| - | [[Category: Fission yeast]] | + | [[Category: Large Structures]] |
| - | [[Category: Peptide alpha-N-acetyltransferase]] | + | [[Category: Schizosaccharomyces pombe 972h-]] |
| - | [[Category: Liszczak, G P]] | + | [[Category: Liszczak GP]] |
| - | [[Category: Marmorstein, R Q]] | + | [[Category: Marmorstein RQ]] |
| - | [[Category: Acetyltransferase]]
| + | |
| - | [[Category: Transferase]]
| + | |
| Structural highlights
Function
ARD1_SCHPO Catalytic component of the NatA N-terminal acetyltransferase, which catalyzes acetylation of proteins beginning with Met-Ser, Met-Gly and Met-Ala. N-acetylation plays a role in normal eukaryotic translation and processing, protect against proteolytic degradation and protein turnover (By similarity).
Publication Abstract from PubMed
N-terminal acetylation is ubiquitous among eukaryotic proteins and controls a myriad of biological processes. Of the N-terminal acetyltransferases (NATs) that facilitate this cotranslational modification, the heterodimeric NatA complex has the most diversity for substrate selection and modifies the majority of all N-terminally acetylated proteins. Here, we report the X-ray crystal structure of the 100-kDa holo-NatA complex from Schizosaccharomyces pombe, in the absence and presence of a bisubstrate peptide-CoA-conjugate inhibitor, as well as the structure of the uncomplexed Naa10p catalytic subunit. The NatA-Naa15p auxiliary subunit contains 13 tetratricopeptide motifs and adopts a ring-like topology that wraps around the NatA-Naa10p subunit, an interaction that alters the Naa10p active site for substrate-specific acetylation. These studies have implications for understanding the mechanistic details of other NAT complexes and how regulatory subunits modulate the activity of the broader family of protein acetyltransferases.
Molecular basis for N-terminal acetylation by the heterodimeric NatA complex.,Liszczak G, Goldberg JM, Foyn H, Petersson EJ, Arnesen T, Marmorstein R Nat Struct Mol Biol. 2013 Aug 4. doi: 10.1038/nsmb.2636. PMID:23912279[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Liszczak G, Goldberg JM, Foyn H, Petersson EJ, Arnesen T, Marmorstein R. Molecular basis for N-terminal acetylation by the heterodimeric NatA complex. Nat Struct Mol Biol. 2013 Aug 4. doi: 10.1038/nsmb.2636. PMID:23912279 doi:10.1038/nsmb.2636
|