|
|
Line 1: |
Line 1: |
| | | |
| ==Crystal structure of S108C mutant of PMM/PGM== | | ==Crystal structure of S108C mutant of PMM/PGM== |
- | <StructureSection load='3rsm' size='340' side='right' caption='[[3rsm]], [[Resolution|resolution]] 2.10Å' scene=''> | + | <StructureSection load='3rsm' size='340' side='right'caption='[[3rsm]], [[Resolution|resolution]] 2.10Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[3rsm]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/"bacillus_aeruginosus"_(schroeter_1872)_trevisan_1885 "bacillus aeruginosus" (schroeter 1872) trevisan 1885]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3RSM OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3RSM FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[3rsm]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/"bacillus_aeruginosus"_(schroeter_1872)_trevisan_1885 "bacillus aeruginosus" (schroeter 1872) trevisan 1885]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3RSM OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3RSM FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=PO4:PHOSPHATE+ION'>PO4</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> | + | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=PO4:PHOSPHATE+ION'>PO4</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1k35|1k35]], [[1k2y|1k2y]], [[1p5d|1p5d]], [[1p5g|1p5g]]</td></tr> | + | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[1k35|1k35]], [[1k2y|1k2y]], [[1p5d|1p5d]], [[1p5g|1p5g]]</div></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">algC, PA5322 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=287 "Bacillus aeruginosus" (Schroeter 1872) Trevisan 1885])</td></tr> | + | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">algC, PA5322 ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=287 "Bacillus aeruginosus" (Schroeter 1872) Trevisan 1885])</td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3rsm FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3rsm OCA], [http://pdbe.org/3rsm PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=3rsm RCSB], [http://www.ebi.ac.uk/pdbsum/3rsm PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=3rsm ProSAT]</span></td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3rsm FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3rsm OCA], [https://pdbe.org/3rsm PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3rsm RCSB], [https://www.ebi.ac.uk/pdbsum/3rsm PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3rsm ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/ALGC_PSEAE ALGC_PSEAE]] The phosphomannomutase activity produces a precursor for alginate polymerization. The alginate layer causes a mucoid phenotype and provides a protective barrier against host immune defenses and antibiotics. Also involved in core-LPS biosynthesis due to its phosphoglucomutase activity. Essential for rhamnolipid production, an exoproduct correlated with pathogenicity, and for biofilm production.<ref>PMID:7515870</ref> <ref>PMID:10481091</ref> | + | [[https://www.uniprot.org/uniprot/ALGC_PSEAE ALGC_PSEAE]] The phosphomannomutase activity produces a precursor for alginate polymerization. The alginate layer causes a mucoid phenotype and provides a protective barrier against host immune defenses and antibiotics. Also involved in core-LPS biosynthesis due to its phosphoglucomutase activity. Essential for rhamnolipid production, an exoproduct correlated with pathogenicity, and for biofilm production.<ref>PMID:7515870</ref> <ref>PMID:10481091</ref> |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 27: |
Line 27: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
| + | [[Category: Large Structures]] |
| [[Category: Akella, A]] | | [[Category: Akella, A]] |
| [[Category: Anbanandam, A]] | | [[Category: Anbanandam, A]] |
| Structural highlights
Function
[ALGC_PSEAE] The phosphomannomutase activity produces a precursor for alginate polymerization. The alginate layer causes a mucoid phenotype and provides a protective barrier against host immune defenses and antibiotics. Also involved in core-LPS biosynthesis due to its phosphoglucomutase activity. Essential for rhamnolipid production, an exoproduct correlated with pathogenicity, and for biofilm production.[1] [2]
Publication Abstract from PubMed
Phosphomannomutase/phosphoglucomutase contributes to the infectivity of Pseudomonas aeruginosa, retains and reorients its intermediate by 180 degrees , and rotates domain 4 to close the deep catalytic cleft. Nuclear magnetic resonance (NMR) spectra of the backbone of wild-type and S108C-inactivated enzymes were assigned to at least 90%. (13)C secondary chemical shifts report excellent agreement of solution and crystallographic structure over the 14 alpha-helices, C-capping motifs, and 20 of the 22 beta-strands. Major and minor NMR peaks implicate substates affecting 28% of assigned residues. These can be attributed to the phosphorylation state and possibly to conformational interconversions. The S108C substitution of the phosphoryl donor and acceptor slowed transformation of the glucose 1-phosphate substrate by impairing k(cat). Addition of the glucose 1,6-bisphosphate intermediate accelerated this reaction by 2-3 orders of magnitude, somewhat bypassing the defect and apparently relieving substrate inhibition. The S108C mutation perturbs the NMR spectra and electron density map around the catalytic cleft while preserving the secondary structure in solution. Diminished peak heights and faster (15)N relaxation suggest line broadening and millisecond fluctuations within four loops that can contact phosphosugars. (15)N NMR relaxation and peak heights suggest that domain 4 reorients slightly faster in solution than domains 1-3, and with a different principal axis of diffusion. This adds to the crystallographic evidence of domain 4 rotations in the enzyme, which were previously suggested to couple to reorientation of the intermediate, substrate binding, and product release.
Solution NMR of a 463-residue phosphohexomutase: domain 4 mobility, substates, and phosphoryl transfer defect.,Sarma AV, Anbanandam A, Kelm A, Mehra-Chaudhary R, Wei Y, Qin P, Lee Y, Berjanskii MV, Mick JA, Beamer LJ, Van Doren SR Biochemistry. 2012 Jan 24;51(3):807-19. Epub 2012 Jan 17. PMID:22242625[3]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Coyne MJ Jr, Russell KS, Coyle CL, Goldberg JB. The Pseudomonas aeruginosa algC gene encodes phosphoglucomutase, required for the synthesis of a complete lipopolysaccharide core. J Bacteriol. 1994 Jun;176(12):3500-7. PMID:7515870
- ↑ Olvera C, Goldberg JB, Sanchez R, Soberon-Chavez G. The Pseudomonas aeruginosa algC gene product participates in rhamnolipid biosynthesis. FEMS Microbiol Lett. 1999 Oct 1;179(1):85-90. PMID:10481091
- ↑ Sarma AV, Anbanandam A, Kelm A, Mehra-Chaudhary R, Wei Y, Qin P, Lee Y, Berjanskii MV, Mick JA, Beamer LJ, Van Doren SR. Solution NMR of a 463-residue phosphohexomutase: domain 4 mobility, substates, and phosphoryl transfer defect. Biochemistry. 2012 Jan 24;51(3):807-19. Epub 2012 Jan 17. PMID:22242625 doi:10.1021/bi201609n
|