4pbf

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 3: Line 3:
<StructureSection load='4pbf' size='340' side='right' caption='[[4pbf]], [[Resolution|resolution]] 1.90&Aring;' scene=''>
<StructureSection load='4pbf' size='340' side='right' caption='[[4pbf]], [[Resolution|resolution]] 1.90&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
-
<table><tr><td colspan='2'>[[4pbf]] is a 2 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4PBF OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4PBF FirstGlance]. <br>
+
<table><tr><td colspan='2'>[[4pbf]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Aj_2067 Aj 2067]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4PBF OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4PBF FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=CAC:CACODYLATE+ION'>CAC</scene>, <scene name='pdbligand=MPD:(4S)-2-METHYL-2,4-PENTANEDIOL'>MPD</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=CAC:CACODYLATE+ION'>CAC</scene>, <scene name='pdbligand=MPD:(4S)-2-METHYL-2,4-PENTANEDIOL'>MPD</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr>
<tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=KCX:LYSINE+NZ-CARBOXYLIC+ACID'>KCX</scene></td></tr>
<tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=KCX:LYSINE+NZ-CARBOXYLIC+ACID'>KCX</scene></td></tr>
Line 9: Line 9:
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4pbf FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4pbf OCA], [http://pdbe.org/4pbf PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=4pbf RCSB], [http://www.ebi.ac.uk/pdbsum/4pbf PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=4pbf ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4pbf FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4pbf OCA], [http://pdbe.org/4pbf PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=4pbf RCSB], [http://www.ebi.ac.uk/pdbsum/4pbf PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=4pbf ProSAT]</span></td></tr>
</table>
</table>
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
Enzymes must be ordered to allow the stabilization of transition states by their active sites, yet dynamic enough to adopt alternative conformations suited to other steps in their catalytic cycles. The biophysical principles that determine how specific protein dynamics evolve and how remote mutations affect catalytic activity are poorly understood. Here we examine a 'molecular fossil record' that was recently obtained during the laboratory evolution of a phosphotriesterase from Pseudomonas diminuta to an arylesterase. Analysis of the structures and dynamics of nine protein variants along this trajectory, and three rationally designed variants, reveals cycles of structural destabilization and repair, evolutionary pressure to 'freeze out' unproductive motions and sampling of distinct conformations with specific catalytic properties in bi-functional intermediates. This work establishes that changes to the conformational landscapes of proteins are an essential aspect of molecular evolution and that change in function can be achieved through enrichment of preexisting conformational sub-states.
 +
 +
The role of protein dynamics in the evolution of new enzyme function.,Campbell E, Kaltenbach M, Correy GJ, Carr PD, Porebski BT, Livingstone EK, Afriat-Jurnou L, Buckle AM, Weik M, Hollfelder F, Tokuriki N, Jackson CJ Nat Chem Biol. 2016 Sep 12. doi: 10.1038/nchembio.2175. PMID:27618189<ref>PMID:27618189</ref>
 +
 +
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 +
</div>
 +
<div class="pdbe-citations 4pbf" style="background-color:#fffaf0;"></div>
==See Also==
==See Also==
*[[Phosphotriesterase|Phosphotriesterase]]
*[[Phosphotriesterase|Phosphotriesterase]]
 +
== References ==
 +
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>
 +
[[Category: Aj 2067]]
[[Category: Campbell, E]]
[[Category: Campbell, E]]
[[Category: Jackson, C J]]
[[Category: Jackson, C J]]

Revision as of 06:09, 18 April 2018

Phosphotriesterase variant Rev12

4pbf, resolution 1.90Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools