Aldo-keto reductase

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 4: Line 4:
__TOC__
__TOC__
== Function ==
== Function ==
-
Aldo-keto reductase (AKR) is a protein family which contains enzymes that reduce carbonyl substrates like sugar aldehyde, keto-steroid, keto-prostaglandin, retinal, quinones and lipid peroxidation by-products to primary alcohol<ref>PMID:25304492</ref>. AKR uses NADP as a cofactor. AKRs contain a conserved catalytic tetrad consisting of Tyr, Asp, Lys and His.
+
'''Aldo-keto reductase''' (AKR) is a protein family which contains enzymes that reduce carbonyl substrates like sugar aldehyde, keto-steroid, keto-prostaglandin, retinal, quinones and lipid peroxidation by-products to primary alcohol<ref>PMID:25304492</ref>. AKR uses NADP as a cofactor. AKRs contain a conserved catalytic tetrad consisting of Tyr, Asp, Lys and His.
*'''AKR1B10''' reduces aliphatic and aromatic aldehydes. It is expressed in adrenal gland, small intestines and colon.<br />
*'''AKR1B10''' reduces aliphatic and aromatic aldehydes. It is expressed in adrenal gland, small intestines and colon.<br />

Revision as of 16:17, 16 January 2017

Human AKR1B10 complex with polyfluorinated inhibitor and NADP 4icc

Drag the structure with the mouse to rotate

3D structures of aldo-keto reductase

Updated on 16-January-2017


References

  1. Penning TM. The aldo-keto reductases (AKRs): Overview. Chem Biol Interact. 2015 Jun 5;234:236-46. doi: 10.1016/j.cbi.2014.09.024. Epub, 2014 Oct 7. PMID:25304492 doi:http://dx.doi.org/10.1016/j.cbi.2014.09.024
  2. Drury JE, Mindnich R, Penning TM. Characterization of disease-related 5beta-reductase (AKR1D1) mutations reveals their potential to cause bile acid deficiency. J Biol Chem. 2010 Aug 6;285(32):24529-37. doi: 10.1074/jbc.M110.127779. Epub 2010, Jun 3. PMID:20522910 doi:http://dx.doi.org/10.1074/jbc.M110.127779
  3. Cousido-Siah A, Ruiz FX, Mitschler A, Porte S, de Lera AR, Martin MJ, Manzanaro S, de la Fuente JA, Terwesten F, Betz M, Klebe G, Farres J, Pares X, Podjarny A. Identification of a novel polyfluorinated compound as a lead to inhibit the human enzymes aldose reductase and AKR1B10: structure determination of both ternary complexes and implications for drug design. Acta Crystallogr D Biol Crystallogr. 2014 Mar;70(Pt 3):889-903. doi:, 10.1107/S1399004713033452. Epub 2014 Feb 27. PMID:24598757 doi:http://dx.doi.org/10.1107/S1399004713033452

Proteopedia Page Contributors and Editors (what is this?)

Michal Harel, Alexander Berchansky, Jaime Prilusky

Personal tools