5tsj

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 9: Line 9:
== Function ==
== Function ==
[[http://www.uniprot.org/uniprot/VATF_THET8 VATF_THET8]] Produces ATP from ADP in the presence of a proton gradient across the membrane. [[http://www.uniprot.org/uniprot/VATE_THET8 VATE_THET8]] Produces ATP from ADP in the presence of a proton gradient across the membrane. [[http://www.uniprot.org/uniprot/VATC_THET8 VATC_THET8]] Produces ATP from ADP in the presence of a proton gradient across the membrane. [[http://www.uniprot.org/uniprot/VATB_THET2 VATB_THET2]] Produces ATP from ADP in the presence of a proton gradient across the membrane. The V-type beta chain is a regulatory subunit. [[http://www.uniprot.org/uniprot/VATA_THET8 VATA_THET8]] Produces ATP from ADP in the presence of a proton gradient across the membrane. The V-type alpha chain is a catalytic subunit. [[http://www.uniprot.org/uniprot/VATD_THET2 VATD_THET2]] Produces ATP from ADP in the presence of a proton gradient across the membrane.
[[http://www.uniprot.org/uniprot/VATF_THET8 VATF_THET8]] Produces ATP from ADP in the presence of a proton gradient across the membrane. [[http://www.uniprot.org/uniprot/VATE_THET8 VATE_THET8]] Produces ATP from ADP in the presence of a proton gradient across the membrane. [[http://www.uniprot.org/uniprot/VATC_THET8 VATC_THET8]] Produces ATP from ADP in the presence of a proton gradient across the membrane. [[http://www.uniprot.org/uniprot/VATB_THET2 VATB_THET2]] Produces ATP from ADP in the presence of a proton gradient across the membrane. The V-type beta chain is a regulatory subunit. [[http://www.uniprot.org/uniprot/VATA_THET8 VATA_THET8]] Produces ATP from ADP in the presence of a proton gradient across the membrane. The V-type alpha chain is a catalytic subunit. [[http://www.uniprot.org/uniprot/VATD_THET2 VATD_THET2]] Produces ATP from ADP in the presence of a proton gradient across the membrane.
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
The bacterial A/V-type ATPase/synthase rotary motor couples ATP hydrolysis/synthesis with proton translocation across biological membranes. The A/V-type ATPase/synthase from Thermus thermophilus has been extensively studied both structurally and functionally for many years. Here we provide an 8.7A resolution cryo-electron microscopy 3D reconstruction of this complex bound to single-domain antibody fragments, small monomeric antibodies containing just the variable heavy domain. Docking of known structures into the density revealed the molecular orientation of the domain antibodies, suggesting that structure determination of co-domain antibody:protein complexes could be a useful avenue for unstable or smaller proteins. Although previous studies suggested that the presence of fluoroaluminate in this complex could change the rotary state of this enzyme, we observed no gross structural rearrangements under these conditions.
 +
 +
Cryo-EM analysis of a domain antibody bound rotary ATPase complex.,Davies RB, Smits C, Wong AS, Stock D, Christie M, Sandin S, Stewart AG J Struct Biol. 2017 Jan 20. pii: S1047-8477(17)30013-8. doi:, 10.1016/j.jsb.2017.01.002. PMID:28115258<ref>PMID:28115258</ref>
 +
 +
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 +
</div>
 +
<div class="pdbe-citations 5tsj" style="background-color:#fffaf0;"></div>
 +
== References ==
 +
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>

Revision as of 08:03, 9 March 2017

Thermus thermophilus V/A-ATPase bound to VH dAbs

5tsj, resolution 8.70Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools