Sandbox Reserved 1057
From Proteopedia
(Difference between revisions)
Line 9: | Line 9: | ||
===Lid Region=== | ===Lid Region=== | ||
- | Amino acids 25-36 of DDAH constitute the loop region of the protein <ref name="frey" />. This is more commonly known as the lid region. The lid is what allows the active site to be exposed to substrate binding or not. Studies have shown crystal structures of the lid at <scene name='69/694225/Low_ph_w_lid/1'>open</scene> and <scene name='69/694225/Closed_lid_zn9/1'>closed </scene> conformations. In the open conformation, the lid forms an alpha helix and the amino acid Leu29 is moved so it does not interact with the active site. This allows the active site to be vulnerable to attack. This lid region is very flexible. This open conformation has been shown when DDAH had been <span class="plainlinks">[https://en.wikipedia.org/wiki/Crystallization crystallized]</span> when <span class="plainlinks">[https://en.wikipedia.org/wiki/Zinc Zn(II)]</span> was bound at <scene name='69/694225/Active_site6/1'>pH 6.3</scene>. There is a closed form which has been observed with Zn(II) binding at <scene name='69/694225/ | + | Amino acids 25-36 of DDAH constitute the loop region of the protein <ref name="frey" />. This is more commonly known as the lid region. The lid is what allows the active site to be exposed to substrate binding or not. Studies have shown crystal structures of the lid at <scene name='69/694225/Low_ph_w_lid/1'>open</scene> and <scene name='69/694225/Closed_lid_zn9/1'>closed </scene> conformations. In the open conformation, the lid forms an alpha helix and the amino acid <scene name='69/694225/Low_ph_w_lid/2'>Leu29</scene> is moved so it does not interact with the active site. This allows the active site to be vulnerable to attack. This lid region is very flexible. This open conformation has been shown when DDAH had been <span class="plainlinks">[https://en.wikipedia.org/wiki/Crystallization crystallized]</span> when <span class="plainlinks">[https://en.wikipedia.org/wiki/Zinc Zn(II)]</span> was bound at <scene name='69/694225/Active_site6/1'>pH 6.3</scene>. There is a closed form which has been observed with Zn(II) binding at <scene name='69/694225/Active_site_9/1'>pH 9.0</scene> and in the unliganded enzyme. When the lid is closed, a specific <span class="plainlinks">[https://en.wikipedia.org/wiki/Hydrogen_bond hydrogen bond]</span> can form between the Leu29 carbonyl and the amino group on bound molecule. This stabilizes this complex. The Leu29 is then <scene name='69/694225/Closed_lid_zn9/3'>blocking</scene> the active site entrance <ref name="frey" />. Opening and closing the lid takes place faster than the actual reaction in the active site <ref name="rasheed">Rasheed M, Richter C, Chisty LT, Kirkpatrick J, Blackledge M, Webb MR, Driscoll PC. Ligand-dependent dynamics of the active site lid in bacterial Dimethyarginine Dimethylaminohydrolase. Biochemistry. 2014 Feb 18;53:1092-1104. PMCID:<span class="plainlinks">[https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3945819/ PMC3945819]</span> doi:<span class="plainlinks">[http://pubs.acs.org/doi/abs/10.1021/bi4015924 10.1021/bi4015924]</span></ref>. This suggests that the <span class="plainlinks">[https://en.wikipedia.org/wiki/Rate-determining_step rate-limiting step]</span> of this reaction is not the lid movement but is the actual chemistry happening to the substrate in the active site of DDAH <ref name="rasheed" />. |
The specific residues in the lid region are different in different organisms <ref name="frey" />. The only consistent similarity is a <span class="plainlinks">[https://en.wikipedia.org/wiki/Conserved_sequence conserved]</span> leucine residue in this lid that function to hydrogen bond with the <span class="plainlinks">[https://en.wikipedia.org/wiki/Ligand ligand]</span> bound to the active site <ref name="rasheed" />. Different <span class="plainlinks">[https://en.wikipedia.org/wiki/Protein_isoform isoforms]</span> from the same species can have differences in lid regions as well <ref name="frey" />. DDAH-2 has a negatively charged lid while DDAH-1 has a positively charged lid <ref name="frey" />. | The specific residues in the lid region are different in different organisms <ref name="frey" />. The only consistent similarity is a <span class="plainlinks">[https://en.wikipedia.org/wiki/Conserved_sequence conserved]</span> leucine residue in this lid that function to hydrogen bond with the <span class="plainlinks">[https://en.wikipedia.org/wiki/Ligand ligand]</span> bound to the active site <ref name="rasheed" />. Different <span class="plainlinks">[https://en.wikipedia.org/wiki/Protein_isoform isoforms]</span> from the same species can have differences in lid regions as well <ref name="frey" />. DDAH-2 has a negatively charged lid while DDAH-1 has a positively charged lid <ref name="frey" />. | ||
===Active Site=== | ===Active Site=== | ||
- | The normal DDAH regulation <span class="plainlinks">[https://en.wikipedia.org/wiki/Reaction_mechanism mechanism]</span> depends on the presence of <scene name='75/752351/Ddah_active_site/2'>Cys 249</scene> in the active site that acts as a <span class="plainlinks">[https://en.wikipedia.org/wiki/Nucleophile nucleophile]</span> in the mechanism <ref name="stone">Stone EM, Costello AL, Tierney DL, Fast W. Substrate-assisted cysteine deprotonation in the mechanism of Dimethylargininase (DDAH) from Pseudomonas aeruginosa. Biochemistry. 2006 May 2;45(17):5618-5630. PMID:<span class="plainlinks">[https://www.ncbi.nlm.nih.gov/pubmed/16634643 16634643]</span> doi:<span class="plainlinks">[http://pubs.acs.org/doi/abs/10.1021/bi052595m 10.1021/bi052595m]</span></ref>. The Cys249 is used to attack the <span class="plainlinks">[https://en.wikipedia.org/wiki/Guanidine guanidinium]</span> carbon on the substrate that is held in the active site via hydrogen bonds. This is followed by collapsing the tetrahedral product to get rid of the <span class="plainlinks">[https://en.wikipedia.org/wiki/Alkylamines alkylamine]</span> leaving group. A <span class="plainlinks">[https://en.wikipedia.org/wiki/Isothiouronium thiouronium]</span> intermediate is then formed with <span class="plainlinks">[https://en.wikipedia.org/wiki/Orbital_hybridisation sp<sup>2</sup> hybridization]</span>. This intermediate is hydrolyzed to form citrulline. The His162 protonates the leaving group in this reaction and generates hydroxide to hydrolyze the intermediate formed in the reaction. Studies suggest that Cys249 is neutral until binding of guanidinium near Cys249 decreases Cys249’s <span class="plainlinks">[https://en.wikipedia.org/wiki/Acid_dissociation_constant pKa]</span> and deprotonates the thiolate to activate the nucleophile. Other studies suggest that the Cys249 and an active site His162 form an <span class="plainlinks">[https://en.wikipedia.org/wiki/Intimate_ion_pair ion pair]</span> to deprotonate the thiolate. Cys249 and His162 can also form a binding site for inhibitors to bind to which stabilizes the thiolate. This is important in regulating NO activity in organisms and designing drugs to inhibit this enzyme <ref name="stone" />. | + | The normal DDAH regulation <span class="plainlinks">[https://en.wikipedia.org/wiki/Reaction_mechanism mechanism]</span> depends on the presence of <scene name='75/752351/Ddah_active_site/2'>Cys 249</scene> in the active site that acts as a <span class="plainlinks">[https://en.wikipedia.org/wiki/Nucleophile nucleophile]</span> in the mechanism <ref name="stone">Stone EM, Costello AL, Tierney DL, Fast W. Substrate-assisted cysteine deprotonation in the mechanism of Dimethylargininase (DDAH) from Pseudomonas aeruginosa. Biochemistry. 2006 May 2;45(17):5618-5630. PMID:<span class="plainlinks">[https://www.ncbi.nlm.nih.gov/pubmed/16634643 16634643]</span> doi:<span class="plainlinks">[http://pubs.acs.org/doi/abs/10.1021/bi052595m 10.1021/bi052595m]</span></ref>. The Cys249 is used to attack the <span class="plainlinks">[https://en.wikipedia.org/wiki/Guanidine guanidinium]</span> carbon on the substrate that is held in the active site via hydrogen bonds (Figure 1). This is followed by collapsing the tetrahedral product to get rid of the <span class="plainlinks">[https://en.wikipedia.org/wiki/Alkylamines alkylamine]</span> leaving group. A <span class="plainlinks">[https://en.wikipedia.org/wiki/Isothiouronium thiouronium]</span> intermediate is then formed with <span class="plainlinks">[https://en.wikipedia.org/wiki/Orbital_hybridisation sp<sup>2</sup> hybridization]</span>. This intermediate is hydrolyzed to form citrulline. The His162 protonates the leaving group in this reaction and generates hydroxide to hydrolyze the intermediate formed in the reaction (Figure 1). Studies suggest that Cys249 is neutral until binding of guanidinium near Cys249 decreases Cys249’s <span class="plainlinks">[https://en.wikipedia.org/wiki/Acid_dissociation_constant pKa]</span> and deprotonates the thiolate to activate the nucleophile. Other studies suggest that the Cys249 and an active site His162 form an <span class="plainlinks">[https://en.wikipedia.org/wiki/Intimate_ion_pair ion pair]</span> to deprotonate the thiolate. Cys249 and His162 can also form a binding site for inhibitors to bind to which stabilizes the thiolate. This is important in regulating NO activity in organisms and designing drugs to inhibit this enzyme <ref name="stone" />. |
- | [[Image:The Normal DDAH Mechanism.jpg|400px|center|thumb| | + | [[Image:The Normal DDAH Mechanism.jpg|400px|center|thumb|Figure 1.]] |
- | There is a channel in the center of the protein that is closed by a < | + | There is a channel in the center of the protein that is closed by a <scene name='75/752351/Ddah_salt_bridge/3'>salt bridge</scene> connecting Glu77 and Lys174 <ref name="frey" />. This salt bridge constitutes the bottom of the active site. There is a pore containing water on one side of the channel. This pore is delineated by the first β strand of each of the five propeller blades. The water in the water-filled pore forms hydrogen bonds to His172 and Ser175. The other side of the channel is the active site. Short loop regions and a helical structure define the outward boundaries of this site. Active sites of DDAH from different organisms is similar. Amino acids involved in the chemical mechanism of creating products are also <scene name='69/694225/Evolutionary_conservation/1'>conserved</scene>.[[Image:ColorKey ConSurf NoYellow NoGray.gif|400px|right|thumb|Color key for DDAH conservation]] |
Amino acids in the lid region are not conserved except for a Leucine amino acid. When MMA or ADMA bind in the active site, they are broken down into L-citrulline and amines (Figure 1). L-citrulline leaves the active site when the lid opens. The amines can either leave through the entrance to the active site or through a pore made by movement of Glu77 and Lys174 <ref name="frey" />. | Amino acids in the lid region are not conserved except for a Leucine amino acid. When MMA or ADMA bind in the active site, they are broken down into L-citrulline and amines (Figure 1). L-citrulline leaves the active site when the lid opens. The amines can either leave through the entrance to the active site or through a pore made by movement of Glu77 and Lys174 <ref name="frey" />. | ||
====Zn(II) Bound to the Active Site==== | ====Zn(II) Bound to the Active Site==== | ||
- | In DDAH, Zinc (ZnII) acts as an endogenous inhibitor and prevents normal NOS activity <ref name="frey" />. The Zn(II)-binding site is located inside the protein’s active site, which makes it a <span class="plainlinks">[https://en.wikipedia.org/wiki/Competitive_inhibition competitive inhibitor]</span>. When bound, Zn(II) blocks the entrance of any other substrate. It was found that Cys273, His172, Glu77, Asp78, and Asp 268 all play a role in the binding of Zn(II). Cys273 directly coordinates with the Zn(II) ion in the active site while the other significant residues stabilize the ion via hydrogen bonding interactions with water molecules in the active site. Depending on pH, His172 can <scene name='69/694225/ | + | In DDAH, Zinc (ZnII) acts as an endogenous inhibitor and prevents normal NOS activity <ref name="frey" />. The Zn(II)-binding site is located inside the protein’s active site, which makes it a <span class="plainlinks">[https://en.wikipedia.org/wiki/Competitive_inhibition competitive inhibitor]</span>(Figure 2). When bound, Zn(II) blocks the entrance of any other substrate. It was found that Cys273, His172, Glu77, Asp78, and Asp 268 all play a role in the binding of Zn(II). <scene name='69/694225/Active_site6/1'>Cys273</scene> directly coordinates with the Zn(II) ion in the active site while the other significant residues stabilize the ion via hydrogen bonding interactions with water molecules in the active site. Depending on pH, His172 can <scene name='69/694225/Active_site_9/1'>change conformation</scene> and use the <span class="plainlinks">[https://en.wikipedia.org/wiki/Imidazole imidazole]</span> group to directly coordinate the Zn(II) ion (Figure 2). Cys273, which is conserved between bovine and humans, is the key active site residue that coordinates Zn(II) <ref name="frey" />. Zinc-cysteine complexes have been found to be important mediators of protein <span class="plainlinks">[https://en.wikipedia.org/wiki/Catalysis catalysis]</span>, regulation, and structure <ref name="pace">Pace NJ, Weerpana E. Zinc-binding cysteines: diverse functions and structural motifs. Biomolecules. 2014 June;4(2):419-434. PMCID:<span class="plainlinks">[https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4101490/ 4101490]</span> doi:<span class="plainlinks">[http://www.mdpi.com/2218-273X/4/2/419/htm 10.3390/biom4020419]</span> </ref>. Cys273 and the water molecules stabilize the Zn(II) ion in a tetrahedral environment. The Zn(II) dissociation constant is 4.2 nM which is consistent with the nanomolar concentrations of Zn(II) in the cells, which provides more evidence for the regulatory use of Zn(II) by DDAH <ref name="pace" />. |
- | [[Image:Zn(II) bound at differing pH values.jpg|300 px|center|thumb| | + | [[Image:Zn(II) bound at differing pH values.jpg|300 px|center|thumb|Figure 2.]] |
===Inhibitors=== | ===Inhibitors=== | ||
- | <scene name='75/752351/Ddah_l-homocysteine/2'>L-homocysteine</scene> and <scene name='75/752351/Ddah_with_L-citrulline/4'>L-citrulline</scene> bind in the active site in the same orientation to create the same <span class="plainlinks">[https://en.wikipedia.org/wiki/Intermolecular_force intermolecular bonds]</span> between | + | <scene name='75/752351/Ddah_l-homocysteine/2'>L-homocysteine</scene> and <scene name='75/752351/Ddah_with_L-citrulline/4'>L-citrulline</scene> bind in the active site in the same orientation to create the same <span class="plainlinks">[https://en.wikipedia.org/wiki/Intermolecular_force intermolecular bonds]</span> between them and DDAH <ref name="frey" />. L-citrulline is a product of DDAH hydrolyzing ADMA and MMA, suggesting DDAH activity creates a <span class="plainlinks">[https://en.wikipedia.org/wiki/Negative_feedback negative feedback]</span> loop on itself. Both molecules enter the active site and cause DDAH to be in its closed lid formation. The α carbon on either molecule creates three salt bridges with DDAH: two with the guanidine group of Arg144 and one with the guanidine group Arg97. Another salt bridge is formed between the ligand and Asp72. The molecules are stabilized in the active site by hydrogen bonds: α carbon-amino group of the ligand to main chain carbonyls of Val267 and Leu29. Hydrogen bonds also form between the side chains of Asp78 and Glu77 with the ureido group of L-citrulline. |
- | Like L-homocysteine and L-citrulline, <scene name='75/752351/Ddah_s-nitroso-l-homocysteine/3'>S-nitroso-L-homocysteine</scene> binds and the lid region of DDAH is closed. When DDAH reacts with S-nitroso-L-homocysteine, a covalent product, N-thiosulfximide exist in the active site because of its binding to Cys273. N-thiosulfximide is stabilized by several salt bridges and hydrogen bonds. Arg144 and Arg97 stabilize the α carbon-carbonyl group via salt bridges, and Leu29, Val267, and Asp72 stabilize the α carbon-amino group by forming | + | Like L-homocysteine and L-citrulline, <scene name='75/752351/Ddah_s-nitroso-l-homocysteine/3'>S-nitroso-L-homocysteine</scene> binds and the lid region of DDAH is closed. When DDAH reacts with S-nitroso-L-homocysteine, a covalent product, N-thiosulfximide exist in the active site because of its binding to Cys273. N-thiosulfximide is stabilized by several salt bridges and hydrogen bonds. Arg144 and Arg97 stabilize the α carbon-carbonyl group via salt bridges, and Leu29, Val267, and Asp72 stabilize the α carbon-amino group by forming hydrogen bonds <ref name="frey" />. |
===Different Isoforms=== | ===Different Isoforms=== | ||
Line 35: | Line 35: | ||
==Medical Relevancy== | ==Medical Relevancy== | ||
- | DDAH works to hydrolyze MMA and ADMA <ref name="frey" />. Both MMA and ADMA competitively inhibit NO synthesis by inhibiting Nitric Oxide Synthase (NOS). NO is an important signaling and effector molecule in <span class="plainlinks">[https://en.wikipedia.org/wiki/Neurotransmission neurotransmission]</span>, bacterial defense, and regulation of vascular tone <ref name="colasanti">Colasanti M, Suzuki H. The dual personality of NO. ScienceDirect. 2000 Jul 1;21(7):249-252. PMID:<span class="plainlinks">[https://www.ncbi.nlm.nih.gov/pubmed/10979862 10979862]</span> doi:<span class="plainlinks">[http://www.sciencedirect.com/science/article/pii/S0165614700014991 10.1016/S0165-6147(00)01499-1]</span></ref>. Because NO is highly toxic, freely diffusible across membranes, and its radical form is fairly reactive, cells must maintain a large control on concentrations by regulating NOS activity and the activity of enzymes such as DDAH that have an indirect effect of the concentration of NO <ref name="rassaf">Rassaf T, Feelisch M, Kelm M. Circulating NO pool: assessment of nitrite and nitroso species in blood and tissues. Free Rad. Biol. Med. 2004 Feb 15;36(4):413-422. PMID:<span class="plainlinks">[https://www.ncbi.nlm.nih.gov/pubmed/14975444 14975444]</span> doi:<span class="plainlinks">[http://www.sciencedirect.com/science/article/pii/S0891584903007962 10.1016/j.freeradbiomed.2003.11.011]</span></ref>. An imbalance of NO contributes to several diseases. Low NO levels, potentially caused by low DDAH activity and therefore high MMA and ADMA concentrations, have been implicated with diseases such as <span class="plainlinks">[https://en.wikipedia.org/wiki/Uremia uremia]</span>, <span class="plainlinks">[http://www.mayoclinic.org/diseases-conditions/heart-failure/basics/definition/con-20029801 chronic heart failure]</span>, <span class="plainlinks">[https://en.wikipedia.org/wiki/Atherosclerosis atherosclerosis]</span>, and <span class="plainlinks">[https://en.wikipedia.org/wiki/Hyperhomocysteinemia hyperhomocysteinemia]</span> <ref name="tsao">Tsao PS, Cooke JP. Endothelial alterations in hypercholesterolemia: more than simply vasodilator dysfunction. Journal of Cardiovascular Pharmacology. 1998;32(3):48-53. PMID:<span class="plainlinks">[https://www.ncbi.nlm.nih.gov/pubmed/9883748 9883748]</span></ref>. High levels of NO have been involved with diseases such as <span class="plainlinks">[https://en.wikipedia.org/wiki/Septic_shock septic shock]</span>, <span class="plainlinks">[http://www.mayoclinic.org/diseases-conditions/migraine-headache/home/ovc-20202432 migraine]</span>, <span class="plainlinks">[https://en.wikipedia.org/wiki/Inflammation inflammation]</span>, and <span class="plainlinks">[https://en.wikipedia.org/wiki/Neurodegeneration neurodegenerative disorders]</span> <ref name="vallance">Vallance P, Leiper J. Blocking NO synthesis: how, where and why? Nat. Rev. Drug Discov. 2002 Dec;1(12):939-950. PMID:<span class="plainlinks">[https://www.ncbi.nlm.nih.gov/pubmed/12461516 12461516]</span> doi:<span class="plainlinks">[http://www.nature.com/nrd/journal/v1/n12/full/nrd960.html 10.1038/nrd960]</span></ref>. Because of the effects on NO levels and known inhibitors to DDAH, regulation of DDAH may be an effective way to regulate NO levels therefore treating | + | DDAH works to hydrolyze MMA and ADMA <ref name="frey" />. Both MMA and ADMA competitively inhibit NO synthesis by inhibiting Nitric Oxide Synthase (NOS). NO is an important signaling and effector molecule in <span class="plainlinks">[https://en.wikipedia.org/wiki/Neurotransmission neurotransmission]</span>, bacterial defense, and regulation of vascular tone <ref name="colasanti">Colasanti M, Suzuki H. The dual personality of NO. ScienceDirect. 2000 Jul 1;21(7):249-252. PMID:<span class="plainlinks">[https://www.ncbi.nlm.nih.gov/pubmed/10979862 10979862]</span> doi:<span class="plainlinks">[http://www.sciencedirect.com/science/article/pii/S0165614700014991 10.1016/S0165-6147(00)01499-1]</span></ref>. Because NO is highly toxic, freely diffusible across membranes, and its radical form is fairly reactive, cells must maintain a large control on concentrations by regulating NOS activity and the activity of enzymes such as DDAH that have an indirect effect of the concentration of NO <ref name="rassaf">Rassaf T, Feelisch M, Kelm M. Circulating NO pool: assessment of nitrite and nitroso species in blood and tissues. Free Rad. Biol. Med. 2004 Feb 15;36(4):413-422. PMID:<span class="plainlinks">[https://www.ncbi.nlm.nih.gov/pubmed/14975444 14975444]</span> doi:<span class="plainlinks">[http://www.sciencedirect.com/science/article/pii/S0891584903007962 10.1016/j.freeradbiomed.2003.11.011]</span></ref>. An imbalance of NO contributes to several diseases. Low NO levels, potentially caused by low DDAH activity and therefore high MMA and ADMA concentrations, have been implicated with diseases such as <span class="plainlinks">[https://en.wikipedia.org/wiki/Uremia uremia]</span>, <span class="plainlinks">[http://www.mayoclinic.org/diseases-conditions/heart-failure/basics/definition/con-20029801 chronic heart failure]</span>, <span class="plainlinks">[https://en.wikipedia.org/wiki/Atherosclerosis atherosclerosis]</span>, and <span class="plainlinks">[https://en.wikipedia.org/wiki/Hyperhomocysteinemia hyperhomocysteinemia]</span> <ref name="tsao">Tsao PS, Cooke JP. Endothelial alterations in hypercholesterolemia: more than simply vasodilator dysfunction. Journal of Cardiovascular Pharmacology. 1998;32(3):48-53. PMID:<span class="plainlinks">[https://www.ncbi.nlm.nih.gov/pubmed/9883748 9883748]</span></ref>. High levels of NO have been involved with diseases such as <span class="plainlinks">[https://en.wikipedia.org/wiki/Septic_shock septic shock]</span>, <span class="plainlinks">[http://www.mayoclinic.org/diseases-conditions/migraine-headache/home/ovc-20202432 migraine]</span>, <span class="plainlinks">[https://en.wikipedia.org/wiki/Inflammation inflammation]</span>, and <span class="plainlinks">[https://en.wikipedia.org/wiki/Neurodegeneration neurodegenerative disorders]</span> <ref name="vallance">Vallance P, Leiper J. Blocking NO synthesis: how, where and why? Nat. Rev. Drug Discov. 2002 Dec;1(12):939-950. PMID:<span class="plainlinks">[https://www.ncbi.nlm.nih.gov/pubmed/12461516 12461516]</span> doi:<span class="plainlinks">[http://www.nature.com/nrd/journal/v1/n12/full/nrd960.html 10.1038/nrd960]</span></ref>. Because of the effects on NO levels and known inhibitors to DDAH, regulation of DDAH may be an effective way to regulate NO levels therefore treating these diseases <ref name="frey" />. |
Revision as of 17:10, 31 March 2017
Dimethylarginine Dimethylaminohydrolase
|
References
- ↑ 1.0 1.1 Palm F, Onozato ML, Luo Z, Wilcox CS. Dimethylarginine dimethylaminohydrolase (DDAH): expression, regulation, and function in the cardiovascular and renal systems. American Journal of Physiology. 2007 Dec 1;293(6):3227-3245. PMID:17933965 doi:10.1152/ajpheart.00998.2007
- ↑ 2.0 2.1 2.2 Tran CTL, Leiper JM, Vallance P. The DDAH/ADMA/NOS pathway. Atherosclerosis Supplements. 2003 Dec;4(4):33-40. PMID:14664901 doi:10.1016/S1567-5688(03)00032-1
- ↑ 3.00 3.01 3.02 3.03 3.04 3.05 3.06 3.07 3.08 3.09 3.10 3.11 3.12 3.13 3.14 3.15 3.16 3.17 3.18 3.19 3.20 3.21 3.22 3.23 Frey D, Braun O, Briand C, Vasak M, Grutter MG. Structure of the mammalian NOS regulator dimethylarginine dimethylaminohydrolase: a basis for the design of specific inhibitors. Structure. 2006 May;14(5):901-911. PMID:16698551 doi:10.1016/j.str.2006.03.006
- ↑ Janssen W, Pullamsetti SS, Cooke J, Weissmann N, Guenther A, Schermuly RT. The role of dimethylarginine dimethylaminohydrolase (DDAH) in pulmonary fibrosis. The Journal of Pathology. 2012 Dec 12;229(2):242-249. Epub 2013 Jan. PMID:23097221 doi:10.1002/path.4127
- ↑ Humm A, Fritsche E, Mann K, Göhl M, Huber R. Recombinant expression and isolation of human L-arginine:glycine amidinotransferase and identification of its active-site cysteine residue. Biochemical Journal. 1997 March 15;322(3):771-776. PMID:9148748 doi:10.1042/bj3220771
- ↑ 6.0 6.1 6.2 Rasheed M, Richter C, Chisty LT, Kirkpatrick J, Blackledge M, Webb MR, Driscoll PC. Ligand-dependent dynamics of the active site lid in bacterial Dimethyarginine Dimethylaminohydrolase. Biochemistry. 2014 Feb 18;53:1092-1104. PMCID:PMC3945819 doi:10.1021/bi4015924
- ↑ 7.0 7.1 Stone EM, Costello AL, Tierney DL, Fast W. Substrate-assisted cysteine deprotonation in the mechanism of Dimethylargininase (DDAH) from Pseudomonas aeruginosa. Biochemistry. 2006 May 2;45(17):5618-5630. PMID:16634643 doi:10.1021/bi052595m
- ↑ 8.0 8.1 Pace NJ, Weerpana E. Zinc-binding cysteines: diverse functions and structural motifs. Biomolecules. 2014 June;4(2):419-434. PMCID:4101490 doi:10.3390/biom4020419
- ↑ Colasanti M, Suzuki H. The dual personality of NO. ScienceDirect. 2000 Jul 1;21(7):249-252. PMID:10979862 doi:10.1016/S0165-6147(00)01499-1
- ↑ Rassaf T, Feelisch M, Kelm M. Circulating NO pool: assessment of nitrite and nitroso species in blood and tissues. Free Rad. Biol. Med. 2004 Feb 15;36(4):413-422. PMID:14975444 doi:10.1016/j.freeradbiomed.2003.11.011
- ↑ Tsao PS, Cooke JP. Endothelial alterations in hypercholesterolemia: more than simply vasodilator dysfunction. Journal of Cardiovascular Pharmacology. 1998;32(3):48-53. PMID:9883748
- ↑ Vallance P, Leiper J. Blocking NO synthesis: how, where and why? Nat. Rev. Drug Discov. 2002 Dec;1(12):939-950. PMID:12461516 doi:10.1038/nrd960
Student Contributors
- Natalie Van Ochten
- Kaitlyn Enderle
- Colton Junod