5vhq
From Proteopedia
(Difference between revisions)
m (Protected "5vhq" [edit=sysop:move=sysop]) |
|||
Line 1: | Line 1: | ||
- | '''Unreleased structure''' | ||
- | + | ==Conformational Landscape of the p28-Bound Human Proteasome Regulatory Particle== | |
+ | <StructureSection load='5vhq' size='340' side='right' caption='[[5vhq]], [[Resolution|resolution]] 8.90Å' scene=''> | ||
+ | == Structural highlights == | ||
+ | <table><tr><td colspan='2'>[[5vhq]] is a 8 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5VHQ OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5VHQ FirstGlance]. <br> | ||
+ | </td></tr><tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[5vgz|5vgz]], [[5vhf|5vhf]], [[5vhh|5vhh]], [[5vhi|5vhi]], [[5vhj|5vhj]], [[5vhm|5vhm]], [[5vhn|5vhn]], [[5vho|5vho]], [[5vhp|5vhp]], [[5vhr|5vhr]], [[5vhs|5vhs]]</td></tr> | ||
+ | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5vhq FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5vhq OCA], [http://pdbe.org/5vhq PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5vhq RCSB], [http://www.ebi.ac.uk/pdbsum/5vhq PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5vhq ProSAT]</span></td></tr> | ||
+ | </table> | ||
+ | == Function == | ||
+ | [[http://www.uniprot.org/uniprot/PRS6A_HUMAN PRS6A_HUMAN]] The 26S protease is involved in the ATP-dependent degradation of ubiquitinated proteins. The regulatory (or ATPase) complex confers ATP dependency and substrate specificity to the 26S complex (By similarity). In case of HIV-1 infection, suppresses Tat-mediated transactivation. [[http://www.uniprot.org/uniprot/PRS4_HUMAN PRS4_HUMAN]] The 26S protease is involved in the ATP-dependent degradation of ubiquitinated proteins. The regulatory (or ATPase) complex confers ATP dependency and substrate specificity to the 26S complex. [[http://www.uniprot.org/uniprot/PRS8_HUMAN PRS8_HUMAN]] The 26S protease is involved in the ATP-dependent degradation of ubiquitinated proteins. The regulatory (or ATPase) complex confers ATP dependency and substrate specificity to the 26S complex. [[http://www.uniprot.org/uniprot/PRS7_HUMAN PRS7_HUMAN]] The 26S protease is involved in the ATP-dependent degradation of ubiquitinated proteins. The regulatory (or ATPase) complex confers ATP dependency and substrate specificity to the 26S complex. In case of HIV-1 infection, positive modulator of Tat-mediated transactivation.<ref>PMID:9295362</ref> [[http://www.uniprot.org/uniprot/PSMD2_HUMAN PSMD2_HUMAN]] Acts as a regulatory subunit of the 26 proteasome which is involved in the ATP-dependent degradation of ubiquitinated proteins. Binds to the intracellular domain of tumor necrosis factor type 1 receptor. The binding domain of TRAP1 and TRAP2 resides outside the death domain of TNFR1. [[http://www.uniprot.org/uniprot/PSD10_HUMAN PSD10_HUMAN]] Acts as a chaperone during the assembly of the 26S proteasome, specifically of the PA700/19S regulatory complex (RC). In the initial step of the base subcomplex assembly is part of an intermediate PSMD10:PSMC4:PSMC5:PAAF1 module which probably assembles with a PSMD5:PSMC2:PSMC1:PSMD2 module. Independently of the proteasome, regulates EGF-induced AKT activation through inhibition of the RHOA/ROCK/PTEN pahway, leading to prolonged AKT activation. Plays an important role in RAS-induced tumorigenesis.<ref>PMID:10613832</ref> <ref>PMID:11900540</ref> <ref>PMID:11779854</ref> <ref>PMID:16023600</ref> <ref>PMID:18040287</ref> <ref>PMID:19490896</ref> <ref>PMID:19729910</ref> <ref>PMID:20628200</ref> Acts as an proto-oncoprotein by being involved in negative regulation of tumor suppressors RB1 and p53/TP53. Overexpression is leading to phosphorylation of RB1 and proteasomal degradation of RB1. Regulates CDK4-mediated phosphorylation of RB1 by competing with CDKN2A for binding with CDK4. Facilitates binding of MDM2 to p53/TP53 and the mono- and polyubiquitination of p53/TP53 by MDM2 suggesting a function in targeting the TP53:MDM2 complex to the 26S proteasome. Involved in p53-independent apoptosis. Involved in regulation of NF-kappa-B by retaining it in the cytoplasm. Binds to the NF-kappa-B component RELA and accelerates its XPO1/CRM1-mediated nuclear export.<ref>PMID:10613832</ref> <ref>PMID:11900540</ref> <ref>PMID:11779854</ref> <ref>PMID:16023600</ref> <ref>PMID:18040287</ref> <ref>PMID:19490896</ref> <ref>PMID:19729910</ref> <ref>PMID:20628200</ref> [[http://www.uniprot.org/uniprot/PRS6B_HUMAN PRS6B_HUMAN]] The 26S protease is involved in the ATP-dependent degradation of ubiquitinated proteins. The regulatory (or ATPase) complex confers ATP dependency and substrate specificity to the 26S complex.<ref>PMID:8060531</ref> [[http://www.uniprot.org/uniprot/PRS10_HUMAN PRS10_HUMAN]] The 26S protease is involved in the ATP-dependent degradation of ubiquitinated proteins. The regulatory (or ATPase) complex confers ATP dependency and substrate specificity to the 26S complex. | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | The proteasome holoenzyme is activated by its regulatory particle (RP) consisting of two subcomplexes, the lid and the base. A key event in base assembly is the formation of a heterohexameric ring of AAA-ATPases, which is guided by at least four RP assembly chaperones in mammals: PAAF1, p28/gankyrin, p27/PSMD9, and S5b. Using cryogenic electron microscopy, we analyzed the non-AAA structure of the p28-bound human RP at 4.5 A resolution and determined seven distinct conformations of the Rpn1-p28-AAA subcomplex within the p28-bound RP at subnanometer resolutions. Remarkably, the p28-bound AAA ring does not form a channel in the free RP and spontaneously samples multiple "open" and "closed" topologies at the Rpt2-Rpt6 and Rpt3-Rpt4 interfaces. Our analysis suggests that p28 assists the proteolytic core particle to select a specific conformation of the ATPase ring for RP engagement and is released in a shoehorn-like fashion in the last step of the chaperone-mediated proteasome assembly. | ||
- | + | Conformational Landscape of the p28-Bound Human Proteasome Regulatory Particle.,Lu Y, Wu J, Dong Y, Chen S, Sun S, Ma YB, Ouyang Q, Finley D, Kirschner MW, Mao Y Mol Cell. 2017 Jul 20;67(2):322-333.e6. doi: 10.1016/j.molcel.2017.06.007. Epub, 2017 Jul 6. PMID:28689658<ref>PMID:28689658</ref> | |
- | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
- | + | </div> | |
- | + | <div class="pdbe-citations 5vhq" style="background-color:#fffaf0;"></div> | |
- | + | == References == | |
- | + | <references/> | |
- | + | __TOC__ | |
- | + | </StructureSection> | |
- | + | ||
[[Category: Chen, S]] | [[Category: Chen, S]] | ||
- | [[Category: Sun, S]] | ||
[[Category: Dong, Y]] | [[Category: Dong, Y]] | ||
[[Category: Finley, D]] | [[Category: Finley, D]] | ||
+ | [[Category: Kirschner, M W]] | ||
+ | [[Category: Lu, Y]] | ||
+ | [[Category: Ma, Y B]] | ||
+ | [[Category: Mao, Y]] | ||
+ | [[Category: Ouyang, Q]] | ||
+ | [[Category: Sun, S]] | ||
+ | [[Category: Wu, J]] | ||
+ | [[Category: 26s proteasome]] | ||
+ | [[Category: Gankyrin]] | ||
+ | [[Category: Hydrolase]] | ||
+ | [[Category: P28]] | ||
+ | [[Category: Regulatory particle]] |
Revision as of 11:02, 24 August 2017
Conformational Landscape of the p28-Bound Human Proteasome Regulatory Particle
|
Categories: Chen, S | Dong, Y | Finley, D | Kirschner, M W | Lu, Y | Ma, Y B | Mao, Y | Ouyang, Q | Sun, S | Wu, J | 26s proteasome | Gankyrin | Hydrolase | P28 | Regulatory particle