Sandbox Reserved 1236

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 5: Line 5:
== Function ==
== Function ==
Luciferase is a class of bioluminescent enzymes that are found in several luminescence organisms. The most studied form Luciferase within its class is found in the North American Firefly (Photinus pyralis). This protein catalyzed the reaction that produces the distinctive yellow flash seen in from the abdomen of the insect. Photinus pyralis is known to use this mechanism for mate attraction and defense. Firefly Luciferase is unique to its species and different forms within the luciferase class can be found in other invertebrates and bacteria.<ref>Conti, E., Franks, N. P., & Brick, P. (1996). Crystal structure of firefly luciferase throws light on a superfamily of adenylate-forming enzymes. Structure, 4(3), 287-298.</ref>. The most notable being the bioluminescent enzyme found in Click Beetles (Pyrophorus). This protein is one of the most studied and widely used luminescence enzymes having various applications in cell and molecular biology.
Luciferase is a class of bioluminescent enzymes that are found in several luminescence organisms. The most studied form Luciferase within its class is found in the North American Firefly (Photinus pyralis). This protein catalyzed the reaction that produces the distinctive yellow flash seen in from the abdomen of the insect. Photinus pyralis is known to use this mechanism for mate attraction and defense. Firefly Luciferase is unique to its species and different forms within the luciferase class can be found in other invertebrates and bacteria.<ref>Conti, E., Franks, N. P., & Brick, P. (1996). Crystal structure of firefly luciferase throws light on a superfamily of adenylate-forming enzymes. Structure, 4(3), 287-298.</ref>. The most notable being the bioluminescent enzyme found in Click Beetles (Pyrophorus). This protein is one of the most studied and widely used luminescence enzymes having various applications in cell and molecular biology.
 +
 +
Luciferase catalyzes two reactions; both reactions use an adenylation reaction along with ATP. The bioluminescent pathway produces Oxyluciferin and a photon of light. The other pathways does not produce light and is known as the nonluminescent reaction. This mechanism utilizes luciferin and produces Luciferyl-CoA. This addiotion of a CoA has been shown to be related to Acyl-CoA synthase used in the activation of fatty acids for oxidation.
==Origin==
==Origin==
Line 21: Line 23:
-
A single peptide has been discover that plays a vital role in the photooxidation by Luciferase. The specific amino acid is a histidine located in the region 244HHGF247 of the protein <ref>Branchini, B. R., Magyar, R. A., Marcantonio, K. M., Newberry, K. J., Stroh, J. G., Hinz, L. K., & Murtiashaw, M. H. (1997). Identification of a Firefly Luciferase Active Site Peptide Using a Benzophenone-based Photooxidation Reagent. Journal of Biological Chemistry, 272(31), 19359-19364.</ref>. It has been shown to be necessary for the use of oxygen in the second part of the reaction.
+
A single peptide has been discover that plays a vital role in the photooxidation by Luciferase. The specific amino acid is a histidine located in the region <scene name='75/750285/Luciferasemonomer114/2'>244HHGF247</scene> of the protein <ref>Branchini, B. R., Magyar, R. A., Marcantonio, K. M., Newberry, K. J., Stroh, J. G., Hinz, L. K., & Murtiashaw, M. H. (1997). Identification of a Firefly Luciferase Active Site Peptide Using a Benzophenone-based Photooxidation Reagent. Journal of Biological Chemistry, 272(31), 19359-19364.</ref>. It has been shown to be necessary for the use of oxygen in the second part of the reaction.
-
This is a sample scene created with SAT to <scene name="/12/3456/Sample/1">color</scene> by Group, and another to make <scene name="/12/3456/Sample/2">a transparent representation</scene> of the protein. You can make your own scenes on SAT starting from scratch or loading and editing one of these sample scenes.
+
==Applications==
==Applications==

Revision as of 21:47, 24 April 2017

This Sandbox is Reserved from Jan 17 through June 31, 2017 for use in the course Biochemistry II taught by Jason Telford at the Maryville University, St. Louis, USA. This reservation includes Sandbox Reserved 1225 through Sandbox Reserved 1244.
To get started:
  • Click the edit this page tab at the top. Save the page after each step, then edit it again.
  • Click the 3D button (when editing, above the wikitext box) to insert Jmol.
  • show the Scene authoring tools, create a molecular scene, and save it. Copy the green link into the page.
  • Add a description of your scene. Use the buttons above the wikitext box for bold, italics, links, headlines, etc.

More help: Help:Editing

Luciferase

PDB ID 5KYV

Drag the structure with the mouse to rotate

References

  1. Conti, E., Franks, N. P., & Brick, P. (1996). Crystal structure of firefly luciferase throws light on a superfamily of adenylate-forming enzymes. Structure, 4(3), 287-298.
  2. Khurana, Pankaj, Rajesh S. Gokhale, and Debasisa Mohanty. "Genome scale prediction of substrate specificity for acyl adenylate superfamily of enzymes based on active site residue profiles." BMC Bioinformatics 11.1 (2010): 57. ResearchGate. Web. 28 Mar. 2017.
  3. Wet, J. R., Wood, K. V., Helinski, D. R., & Deluca, M. (1985). Cloning of firefly luciferase cDNA and the expression of active luciferase in Escherichia coli. Proceedings of the National Academy of Sciences, 82(23), 7870-7873.
  4. Viviani, V. R. (2002). The origin, diversity, and structure function relationships of insect luciferases. Cellular and Molecular Life Sciences, 59(11), 1833-1850.
  5. Branchini, B. R., Magyar, R. A., Marcantonio, K. M., Newberry, K. J., Stroh, J. G., Hinz, L. K., & Murtiashaw, M. H. (1997). Identification of a Firefly Luciferase Active Site Peptide Using a Benzophenone-based Photooxidation Reagent. Journal of Biological Chemistry, 272(31), 19359-19364.
Personal tools