We apologize for Proteopedia being slow to respond. For the past two years, a new implementation of Proteopedia has been being built. Soon, it will replace this 18-year old system. All existing content will be moved to the new system at a date that will be announced here.

5xwd

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
m (Protected "5xwd" [edit=sysop:move=sysop])
Line 1: Line 1:
-
'''Unreleased structure'''
 
-
The entry 5xwd is ON HOLD until Paper Publication
+
==Crystal structure of the complex of 059-152-Fv and EGFR-ECD==
 +
<StructureSection load='5xwd' size='340' side='right' caption='[[5xwd]], [[Resolution|resolution]] 2.89&Aring;' scene=''>
 +
== Structural highlights ==
 +
<table><tr><td colspan='2'>[[5xwd]] is a 3 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5XWD OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5XWD FirstGlance]. <br>
 +
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=BMA:BETA-D-MANNOSE'>BMA</scene>, <scene name='pdbligand=MAN:ALPHA-D-MANNOSE'>MAN</scene>, <scene name='pdbligand=NAG:N-ACETYL-D-GLUCOSAMINE'>NAG</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr>
 +
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Receptor_protein-tyrosine_kinase Receptor protein-tyrosine kinase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.10.1 2.7.10.1] </span></td></tr>
 +
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5xwd FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5xwd OCA], [http://pdbe.org/5xwd PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5xwd RCSB], [http://www.ebi.ac.uk/pdbsum/5xwd PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5xwd ProSAT]</span></td></tr>
 +
</table>
 +
== Disease ==
 +
[[http://www.uniprot.org/uniprot/EGFR_HUMAN EGFR_HUMAN]] Defects in EGFR are associated with lung cancer (LNCR) [MIM:[http://omim.org/entry/211980 211980]]. LNCR is a common malignancy affecting tissues of the lung. The most common form of lung cancer is non-small cell lung cancer (NSCLC) that can be divided into 3 major histologic subtypes: squamous cell carcinoma, adenocarcinoma, and large cell lung cancer. NSCLC is often diagnosed at an advanced stage and has a poor prognosis.
 +
== Function ==
 +
[[http://www.uniprot.org/uniprot/EGFR_HUMAN EGFR_HUMAN]] Receptor tyrosine kinase binding ligands of the EGF family and activating several signaling cascades to convert extracellular cues into appropriate cellular responses. Known ligands include EGF, TGFA/TGF-alpha, amphiregulin, epigen/EPGN, BTC/betacellulin, epiregulin/EREG and HBEGF/heparin-binding EGF. Ligand binding triggers receptor homo- and/or heterodimerization and autophosphorylation on key cytoplasmic residues. The phosphorylated receptor recruits adapter proteins like GRB2 which in turn activates complex downstream signaling cascades. Activates at least 4 major downstream signaling cascades including the RAS-RAF-MEK-ERK, PI3 kinase-AKT, PLCgamma-PKC and STATs modules. May also activate the NF-kappa-B signaling cascade. Also directly phosphorylates other proteins like RGS16, activating its GTPase activity and probably coupling the EGF receptor signaling to the G protein-coupled receptor signaling. Also phosphorylates MUC1 and increases its interaction with SRC and CTNNB1/beta-catenin.<ref>PMID:7657591</ref> <ref>PMID:11602604</ref> <ref>PMID:12873986</ref> <ref>PMID:10805725</ref> <ref>PMID:11116146</ref> <ref>PMID:11483589</ref> <ref>PMID:17115032</ref> <ref>PMID:21258366</ref> <ref>PMID:12297050</ref> <ref>PMID:12620237</ref> <ref>PMID:15374980</ref> <ref>PMID:19560417</ref> <ref>PMID:20837704</ref> Isoform 2 may act as an antagonist of EGF action.<ref>PMID:7657591</ref> <ref>PMID:11602604</ref> <ref>PMID:12873986</ref> <ref>PMID:10805725</ref> <ref>PMID:11116146</ref> <ref>PMID:11483589</ref> <ref>PMID:17115032</ref> <ref>PMID:21258366</ref> <ref>PMID:12297050</ref> <ref>PMID:12620237</ref> <ref>PMID:15374980</ref> <ref>PMID:19560417</ref> <ref>PMID:20837704</ref>
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
Growing numbers of therapeutic antibodies offer excellent treatment strategies for many diseases. Elucidation of the interaction between a potential therapeutic antibody and its target protein by structural analysis reveals the mechanism of action and offers useful information for developing rational antibody designs for improved affinity. Here, we developed a rapid, high-yield cell-free system using dialysis mode to synthesize antibody fragments for the structural analysis of antibody-antigen complexes. Optimal synthesis conditions of fragments (Fv and Fab) of the anti-EGFR antibody 059-152 were rapidly determined in a day by using a 30-mul-scale unit. The concentration of supplemented disulfide isomerase, DsbC, was critical to obtaining soluble antibody fragments. The optimal conditions were directly applicable to a 9-ml-scale reaction, with linear scalable yields of more than 1 mg/ml. Analyses of purified 059-152-Fv and Fab showed that the cell-free synthesized antibody fragments were disulfide-bridged, with antigen binding activity comparable to that of clinical antibodies. Examination of the crystal structure of cell-free synthesized 059-152-Fv in complex with the extracellular domain of human EGFR revealed that the epitope of 059-152-Fv broadly covers the EGF binding surface on domain III, including residues that formed critical hydrogen bonds with EGF (Asp355EGFR, Gln384EGFR, H409EGFR, and Lys465EGFR), so that the antibody inhibited EGFR activation. We further demonstrated the application of the cell-free system to site-specific integration of non-natural amino acids for antibody engineering, which would expand the availability of therapeutic antibodies based on structural information and rational design. This cell-free system could be an ideal antibody-fragment production platform for functional and structural analysis of potential therapeutic antibodies and for engineered antibody development.
-
Authors: Matsuda, T., Ito, T., Shirouzu, M.
+
Cell-free synthesis of functional antibody fragments to provide a structural basis for antibody-antigen interaction.,Matsuda T, Ito T, Takemoto C, Katsura K, Ikeda M, Wakiyama M, Kukimoto-Niino M, Yokoyama S, Kurosawa Y, Shirouzu M PLoS One. 2018 Feb 20;13(2):e0193158. doi: 10.1371/journal.pone.0193158., eCollection 2018. PMID:29462206<ref>PMID:29462206</ref>
-
Description: Crystal structure of the complex of 059-152-Fv and EGFR-ECD
+
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
-
[[Category: Unreleased Structures]]
+
</div>
 +
<div class="pdbe-citations 5xwd" style="background-color:#fffaf0;"></div>
 +
== References ==
 +
<references/>
 +
__TOC__
 +
</StructureSection>
 +
[[Category: Receptor protein-tyrosine kinase]]
 +
[[Category: Ito, T]]
[[Category: Matsuda, T]]
[[Category: Matsuda, T]]
[[Category: Shirouzu, M]]
[[Category: Shirouzu, M]]
-
[[Category: Ito, T]]
+
[[Category: Antibody]]
 +
[[Category: Complex]]
 +
[[Category: Receptor]]
 +
[[Category: Signaling protein]]

Revision as of 06:28, 28 February 2018

Crystal structure of the complex of 059-152-Fv and EGFR-ECD

5xwd, resolution 2.89Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools