Human growth hormone

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 75: Line 75:
HGH is phosphorylated on Ser residues 132 and 176 (Giorgianni, Beranova-Giorgianni, and Desiderio, 2004)<ref>PMID:14997482</ref>. Other research has indicated possible phosphorylation of Tyr residues 35 and 42. However, these phosphorylations were only investigated in carcinoma cells with constitutively active epidermal growth factor-stimulated tyrosine kinase (Baldwin et al., 1983)<ref>PMID:6600511</ref>. The overall influence of these post-translational modifications on hGH activity has yet to be determined.
HGH is phosphorylated on Ser residues 132 and 176 (Giorgianni, Beranova-Giorgianni, and Desiderio, 2004)<ref>PMID:14997482</ref>. Other research has indicated possible phosphorylation of Tyr residues 35 and 42. However, these phosphorylations were only investigated in carcinoma cells with constitutively active epidermal growth factor-stimulated tyrosine kinase (Baldwin et al., 1983)<ref>PMID:6600511</ref>. The overall influence of these post-translational modifications on hGH activity has yet to be determined.
-
'''Metal Binding Sites'''<br/>
 
-
Histidine 18 /* May be best just to add scene link featuring these. The coordinates listed in the previous version don't really say much. */
 
-
Histidine 21 /* May be best just to add scene link featuring these. The coordinates listed in the previous version don't really say much. */
 
-
Glutamine 174 /* May be best just to add scene link featuring these. The coordinates listed in the previous version don't really say much. */
 
==Receptor Binding Site==
==Receptor Binding Site==

Revision as of 06:27, 20 October 2017

Human growth hormone (PDB entry 1hgu)

Drag the structure with the mouse to rotate

3D structures of human growth hormone

Updated on 20-October-2017

1huw, 1hgu – HGH – human
3hhr, 1hwg, 1kf9 – HGH + HGH receptor
1hwh, 1a22 – HGH (mutant) + HGH receptor
1axi – HGH (mutant) + HGH receptor (mutant)
1bp3 – HGH (mutant) + prolactin receptor

References

  1. Chawla RK, Parks JS, Rudman D. Structural variants of human growth hormone: biochemical, genetic, and clinical aspects. Annu Rev Med. 1983;34:519-47. PMID:6344776 doi:http://dx.doi.org/10.1146/annurev.me.34.020183.002511
  2. Millar DS, Lewis MD, Horan M, Newsway V, Easter TE, Gregory JW, Fryklund L, Norin M, Crowne EC, Davies SJ, Edwards P, Kirk J, Waldron K, Smith PJ, Phillips JA 3rd, Scanlon MF, Krawczak M, Cooper DN, Procter AM. Novel mutations of the growth hormone 1 (GH1) gene disclosed by modulation of the clinical selection criteria for individuals with short stature. Hum Mutat. 2003 Apr;21(4):424-40. PMID:12655557 doi:http://dx.doi.org/10.1002/humu.10168
  3. Takahashi Y, Shirono H, Arisaka O, Takahashi K, Yagi T, Koga J, Kaji H, Okimura Y, Abe H, Tanaka T, Chihara K. Biologically inactive growth hormone caused by an amino acid substitution. J Clin Invest. 1997 Sep 1;100(5):1159-65. PMID:9276733 doi:10.1172/JCI119627
  4. Michel G, Chantalat L, Duee E, Barbeyron T, Henrissat B, Kloareg B, Dideberg O. The kappa-carrageenase of P. carrageenovora features a tunnel-shaped active site: a novel insight in the evolution of Clan-B glycoside hydrolases. Structure. 2001 Jun;9(6):513-25. PMID:11435116
  5. Giorgianni F, Beranova-Giorgianni S, Desiderio DM. Identification and characterization of phosphorylated proteins in the human pituitary. Proteomics. 2004 Mar;4(3):587-98. PMID:14997482 doi:http://dx.doi.org/10.1002/pmic.200300584
  6. Baldwin GS, Knesel J, Monckton JM. Phosphorylation of gastrin-17 by epidermal growth factor-stimulated tyrosine kinase. Nature. 1983 Feb 3;301(5899):435-7. PMID:6600511
  7. Andersen O, Haugaard SB, Flyvbjerg A, Andersen UB, Orskov H, Madsbad S, Nielsen JO, Iversen J. Low-dose growth hormone and human immunodeficiency virus-associated lipodystrophy syndrome: a pilot study. Eur J Clin Invest. 2004 Aug;34(8):561-8. PMID:15305891 doi:http://dx.doi.org/10.1111/j.1365-2362.2004.01380.x
  8. Miller TL, Mayo KE. Glucocorticoids regulate pituitary growth hormone-releasing hormone receptor messenger ribonucleic acid expression. Endocrinology. 1997 Jun;138(6):2458-65. PMID:9165036 doi:http://dx.doi.org/10.1210/endo.138.6.5184
  9. Lima L, Arce V, Diaz MJ, Tresguerres JA, Devesa J. Glucocorticoids may inhibit growth hormone release by enhancing beta-adrenergic responsiveness in hypothalamic somatostatin neurons. J Clin Endocrinol Metab. 1993 Feb;76(2):439-44. PMID:8094392 doi:http://dx.doi.org/10.1210/jcem.76.2.8094392
  10. Yakar S, Setser J, Zhao H, Stannard B, Haluzik M, Glatt V, Bouxsein ML, Kopchick JJ, LeRoith D. Inhibition of growth hormone action improves insulin sensitivity in liver IGF-1-deficient mice. J Clin Invest. 2004 Jan;113(1):96-105. PMID:14702113 doi:http://dx.doi.org/10.1172/JCI17763
  11. Freda PU, Post KD, Powell JS, Wardlaw SL. Evaluation of disease status with sensitive measures of growth hormone secretion in 60 postoperative patients with acromegaly. J Clin Endocrinol Metab. 1998 Nov;83(11):3808-16. PMID:9814451 doi:http://dx.doi.org/10.1210/jcem.83.11.5266

See Also

Personal tools