Human growth hormone

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 5: Line 5:
'''Human growth hormone''' (hGH) plays a vital role in growth and development. It is naturally produced by somatotropic cells in the anterior pituitary gland. The [[hormone]] is produced as a 217 amino acid precursor protein. The 26 N-terminal amino acids correspond to a signal peptide, which is essential for hormone secretion. This signal peptide is cleaved during the secretion process to yield the mature, 191 amino acid form of hGH.
'''Human growth hormone''' (hGH) plays a vital role in growth and development. It is naturally produced by somatotropic cells in the anterior pituitary gland. The [[hormone]] is produced as a 217 amino acid precursor protein. The 26 N-terminal amino acids correspond to a signal peptide, which is essential for hormone secretion. This signal peptide is cleaved during the secretion process to yield the mature, 191 amino acid form of hGH.
-
Mature hGH travels through the bloodstream and interacts with a specific hGH-receptor on the surface of various cells, including muscle, bone, and cartilage. Binding of hGH to its receptor causes dimerization and signal transduction, which ultimately stimulates cellular division. HGH also indirectly influences growth by stimulating the liver to produce additional growth factors, such as insulin-like growth factor-1. Synthetic versions of hGH produced by recombinant DNA technology are used to treat growth disorders associated with hGH deficiencies.
+
Mature hGH travels through the bloodstream and interacts with a specific hGH-receptor on the surface of various cells, including muscle, bone, and cartilage. Binding of hGH to its receptor causes dimerization and signal transduction, which ultimately stimulates cellular division. HGH also indirectly influences growth by stimulating the liver to produce additional growth factors, such as insulin-like growth factor-1. Synthetic versions of hGH produced by recombinant DNA technology are used to treat growth disorders associated with hGH deficiencies. [[Prolactin receptor]] (PRLR) can also bind to and be activated by growth hormone.
==Location in the Body==
==Location in the Body==

Revision as of 13:45, 17 February 2021

Human growth hormone (PDB entry 1hgu)

Drag the structure with the mouse to rotate

3D structures of human growth hormone

Updated on 17-February-2021

1huw, 1hgu – HGH – human
3hhr, 1hwg, 1kf9 – HGH + HGH receptor
1hwh, 1a22 – HGH (mutant) + HGH receptor
1axi – HGH (mutant) + HGH receptor (mutant)
1bp3 – HGH (mutant) + prolactin receptor

References

  1. Chawla RK, Parks JS, Rudman D. Structural variants of human growth hormone: biochemical, genetic, and clinical aspects. Annu Rev Med. 1983;34:519-47. PMID:6344776 doi:http://dx.doi.org/10.1146/annurev.me.34.020183.002511
  2. Millar DS, Lewis MD, Horan M, Newsway V, Easter TE, Gregory JW, Fryklund L, Norin M, Crowne EC, Davies SJ, Edwards P, Kirk J, Waldron K, Smith PJ, Phillips JA 3rd, Scanlon MF, Krawczak M, Cooper DN, Procter AM. Novel mutations of the growth hormone 1 (GH1) gene disclosed by modulation of the clinical selection criteria for individuals with short stature. Hum Mutat. 2003 Apr;21(4):424-40. PMID:12655557 doi:http://dx.doi.org/10.1002/humu.10168
  3. Takahashi Y, Shirono H, Arisaka O, Takahashi K, Yagi T, Koga J, Kaji H, Okimura Y, Abe H, Tanaka T, Chihara K. Biologically inactive growth hormone caused by an amino acid substitution. J Clin Invest. 1997 Sep 1;100(5):1159-65. PMID:9276733 doi:10.1172/JCI119627
  4. Michel G, Chantalat L, Duee E, Barbeyron T, Henrissat B, Kloareg B, Dideberg O. The kappa-carrageenase of P. carrageenovora features a tunnel-shaped active site: a novel insight in the evolution of Clan-B glycoside hydrolases. Structure. 2001 Jun;9(6):513-25. PMID:11435116
  5. Giorgianni F, Beranova-Giorgianni S, Desiderio DM. Identification and characterization of phosphorylated proteins in the human pituitary. Proteomics. 2004 Mar;4(3):587-98. PMID:14997482 doi:http://dx.doi.org/10.1002/pmic.200300584
  6. Baldwin GS, Knesel J, Monckton JM. Phosphorylation of gastrin-17 by epidermal growth factor-stimulated tyrosine kinase. Nature. 1983 Feb 3;301(5899):435-7. PMID:6600511
  7. Andersen O, Haugaard SB, Flyvbjerg A, Andersen UB, Orskov H, Madsbad S, Nielsen JO, Iversen J. Low-dose growth hormone and human immunodeficiency virus-associated lipodystrophy syndrome: a pilot study. Eur J Clin Invest. 2004 Aug;34(8):561-8. PMID:15305891 doi:http://dx.doi.org/10.1111/j.1365-2362.2004.01380.x
  8. Miller TL, Mayo KE. Glucocorticoids regulate pituitary growth hormone-releasing hormone receptor messenger ribonucleic acid expression. Endocrinology. 1997 Jun;138(6):2458-65. PMID:9165036 doi:http://dx.doi.org/10.1210/endo.138.6.5184
  9. Lima L, Arce V, Diaz MJ, Tresguerres JA, Devesa J. Glucocorticoids may inhibit growth hormone release by enhancing beta-adrenergic responsiveness in hypothalamic somatostatin neurons. J Clin Endocrinol Metab. 1993 Feb;76(2):439-44. PMID:8094392 doi:http://dx.doi.org/10.1210/jcem.76.2.8094392
  10. Yakar S, Setser J, Zhao H, Stannard B, Haluzik M, Glatt V, Bouxsein ML, Kopchick JJ, LeRoith D. Inhibition of growth hormone action improves insulin sensitivity in liver IGF-1-deficient mice. J Clin Invest. 2004 Jan;113(1):96-105. PMID:14702113 doi:http://dx.doi.org/10.1172/JCI17763
  11. Freda PU, Post KD, Powell JS, Wardlaw SL. Evaluation of disease status with sensitive measures of growth hormone secretion in 60 postoperative patients with acromegaly. J Clin Endocrinol Metab. 1998 Nov;83(11):3808-16. PMID:9814451 doi:http://dx.doi.org/10.1210/jcem.83.11.5266

See Also

Personal tools