|
|
Line 1: |
Line 1: |
- | {{Large structure}}
| + | |
| ==Crystal structure of designed two-component self-assembling icosahedral cage I52-32== | | ==Crystal structure of designed two-component self-assembling icosahedral cage I52-32== |
- | <StructureSection load='5im4' size='340' side='right' caption='[[5im4]], [[Resolution|resolution]] 3.50Å' scene=''> | + | <StructureSection load='5im4' size='340' side='right'caption='[[5im4]], [[Resolution|resolution]] 3.50Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[5im4]] is a 40 chain structure with sequence from [http://en.wikipedia.org/wiki/Cals4 Cals4] and [http://en.wikipedia.org/wiki/Candida_albicans_p37005 Candida albicans p37005]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5IM4 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5IM4 FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[5im4]] is a 40 chain structure with sequence from [https://en.wikipedia.org/wiki/Caldanaerobacter_subterraneus_subsp._tengcongensis_MB4 Caldanaerobacter subterraneus subsp. tengcongensis MB4] and [https://en.wikipedia.org/wiki/Candida_albicans_P37005 Candida albicans P37005]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5IM4 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=5IM4 FirstGlance]. <br> |
- | </td></tr><tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">MEU_00538 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=1094985 Candida albicans P37005]), ManX, TTE0192 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=273068 CALS4])</td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 3.5Å</td></tr> |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/6,7-dimethyl-8-ribityllumazine_synthase 6,7-dimethyl-8-ribityllumazine synthase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.5.1.78 2.5.1.78] </span></td></tr>
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=5im4 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5im4 OCA], [https://pdbe.org/5im4 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=5im4 RCSB], [https://www.ebi.ac.uk/pdbsum/5im4 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=5im4 ProSAT]</span></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5im4 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5im4 OCA], [http://pdbe.org/5im4 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5im4 RCSB], [http://www.ebi.ac.uk/pdbsum/5im4 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5im4 ProSAT]</span></td></tr> | + | |
| </table> | | </table> |
- | {{Large structure}} | |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/A0A0A3CUI3_CANAX A0A0A3CUI3_CANAX]] Catalyzes the formation of 6,7-dimethyl-8-ribityllumazine by condensation of 5-amino-6-(D-ribitylamino)uracil with 3,4-dihydroxy-2-butanone 4-phosphate. This is the penultimate step in the biosynthesis of riboflavin.[RuleBase:RU003795] | + | [https://www.uniprot.org/uniprot/Q8RD55_CALS4 Q8RD55_CALS4] |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 24: |
Line 22: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: 6,7-dimethyl-8-ribityllumazine synthase]] | + | [[Category: Caldanaerobacter subterraneus subsp. tengcongensis MB4]] |
- | [[Category: Cals4]] | + | [[Category: Candida albicans P37005]] |
- | [[Category: Candida albicans p37005]] | + | [[Category: Large Structures]] |
- | [[Category: Baker, D]] | + | [[Category: Baker D]] |
- | [[Category: Bale, J B]] | + | [[Category: Bale JB]] |
- | [[Category: Cascio, D]] | + | [[Category: Cascio D]] |
- | [[Category: Collazo, M J]] | + | [[Category: Collazo MJ]] |
- | [[Category: King, N P]] | + | [[Category: King NP]] |
- | [[Category: Liu, Y A]] | + | [[Category: Liu YA]] |
- | [[Category: Sawaya, M R]] | + | [[Category: Sawaya MR]] |
- | [[Category: Sheffler, W]] | + | [[Category: Sheffler W]] |
- | [[Category: Thomas, C]] | + | [[Category: Thomas C]] |
- | [[Category: Yeates, T O]] | + | [[Category: Yeates TO]] |
- | [[Category: Co-assembling]]
| + | |
- | [[Category: Computational design]]
| + | |
- | [[Category: Designed protein cage]]
| + | |
- | [[Category: Icosahedron]]
| + | |
- | [[Category: Multimerization]]
| + | |
- | [[Category: Nanomaterial]]
| + | |
- | [[Category: Nanostructure]]
| + | |
- | [[Category: Protein binding]]
| + | |
- | [[Category: Protein engineering]]
| + | |
- | [[Category: Rosetta]]
| + | |
- | [[Category: Self-assembling]]
| + | |
- | [[Category: Symmetry]]
| + | |
- | [[Category: Two-component]]
| + | |
| Structural highlights
Function
Q8RD55_CALS4
Publication Abstract from PubMed
Nature provides many examples of self- and co-assembling protein-based molecular machines, including icosahedral protein cages that serve as scaffolds, enzymes, and compartments for essential biochemical reactions and icosahedral virus capsids, which encapsidate and protect viral genomes and mediate entry into host cells. Inspired by these natural materials, we report the computational design and experimental characterization of co-assembling, two-component, 120-subunit icosahedral protein nanostructures with molecular weights (1.8 to 2.8 megadaltons) and dimensions (24 to 40 nanometers in diameter) comparable to those of small viral capsids. Electron microscopy, small-angle x-ray scattering, and x-ray crystallography show that 10 designs spanning three distinct icosahedral architectures form materials closely matching the design models. In vitro assembly of icosahedral complexes from independently purified components occurs rapidly, at rates comparable to those of viral capsids, and enables controlled packaging of molecular cargo through charge complementarity. The ability to design megadalton-scale materials with atomic-level accuracy and controllable assembly opens the door to a new generation of genetically programmable protein-based molecular machines.
Accurate design of megadalton-scale two-component icosahedral protein complexes.,Bale JB, Gonen S, Liu Y, Sheffler W, Ellis D, Thomas C, Cascio D, Yeates TO, Gonen T, King NP, Baker D Science. 2016 Jul 22;353(6297):389-94. doi: 10.1126/science.aaf8818. PMID:27463675[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Bale JB, Gonen S, Liu Y, Sheffler W, Ellis D, Thomas C, Cascio D, Yeates TO, Gonen T, King NP, Baker D. Accurate design of megadalton-scale two-component icosahedral protein complexes. Science. 2016 Jul 22;353(6297):389-94. doi: 10.1126/science.aaf8818. PMID:27463675 doi:http://dx.doi.org/10.1126/science.aaf8818
|