|
|
Line 1: |
Line 1: |
| | | |
| ==Structural analysis of a viral OTU domain protease from the Crimean-Congo Hemorrhagic Fever virus in complex with human ubiquitin== | | ==Structural analysis of a viral OTU domain protease from the Crimean-Congo Hemorrhagic Fever virus in complex with human ubiquitin== |
- | <StructureSection load='3prm' size='340' side='right' caption='[[3prm]], [[Resolution|resolution]] 2.30Å' scene=''> | + | <StructureSection load='3prm' size='340' side='right'caption='[[3prm]], [[Resolution|resolution]] 2.30Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[3prm]] is a 4 chain structure with sequence from [http://en.wikipedia.org/wiki/ ] and [http://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3PRM OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3PRM FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[3prm]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/ ] and [https://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3PRM OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3PRM FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=3CN:3-AMINOPROPANE'>3CN</scene></td></tr> | + | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=3CN:3-AMINOPROPANE'>3CN</scene></td></tr> |
| <tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=MSE:SELENOMETHIONINE'>MSE</scene></td></tr> | | <tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=MSE:SELENOMETHIONINE'>MSE</scene></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">UBC ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr> | + | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">UBC ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr> |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Ubiquitinyl_hydrolase_1 Ubiquitinyl hydrolase 1], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.4.19.12 3.4.19.12] </span></td></tr> | + | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[https://en.wikipedia.org/wiki/Ubiquitinyl_hydrolase_1 Ubiquitinyl hydrolase 1], with EC number [https://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.4.19.12 3.4.19.12] </span></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3prm FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3prm OCA], [http://pdbe.org/3prm PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=3prm RCSB], [http://www.ebi.ac.uk/pdbsum/3prm PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=3prm ProSAT]</span></td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3prm FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3prm OCA], [https://pdbe.org/3prm PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3prm RCSB], [https://www.ebi.ac.uk/pdbsum/3prm PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3prm ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/UBC_HUMAN UBC_HUMAN]] Ubiquitin exists either covalently attached to another protein, or free (unanchored). When covalently bound, it is conjugated to target proteins via an isopeptide bond either as a monomer (monoubiquitin), a polymer linked via different Lys residues of the ubiquitin (polyubiquitin chains) or a linear polymer linked via the initiator Met of the ubiquitin (linear polyubiquitin chains). Polyubiquitin chains, when attached to a target protein, have different functions depending on the Lys residue of the ubiquitin that is linked: Lys-6-linked may be involved in DNA repair; Lys-11-linked is involved in ERAD (endoplasmic reticulum-associated degradation) and in cell-cycle regulation; Lys-29-linked is involved in lysosomal degradation; Lys-33-linked is involved in kinase modification; Lys-48-linked is involved in protein degradation via the proteasome; Lys-63-linked is involved in endocytosis, DNA-damage responses as well as in signaling processes leading to activation of the transcription factor NF-kappa-B. Linear polymer chains formed via attachment by the initiator Met lead to cell signaling. Ubiquitin is usually conjugated to Lys residues of target proteins, however, in rare cases, conjugation to Cys or Ser residues has been observed. When polyubiquitin is free (unanchored-polyubiquitin), it also has distinct roles, such as in activation of protein kinases, and in signaling.<ref>PMID:16543144</ref> <ref>PMID:19754430</ref> | + | [[https://www.uniprot.org/uniprot/UBC_HUMAN UBC_HUMAN]] Ubiquitin exists either covalently attached to another protein, or free (unanchored). When covalently bound, it is conjugated to target proteins via an isopeptide bond either as a monomer (monoubiquitin), a polymer linked via different Lys residues of the ubiquitin (polyubiquitin chains) or a linear polymer linked via the initiator Met of the ubiquitin (linear polyubiquitin chains). Polyubiquitin chains, when attached to a target protein, have different functions depending on the Lys residue of the ubiquitin that is linked: Lys-6-linked may be involved in DNA repair; Lys-11-linked is involved in ERAD (endoplasmic reticulum-associated degradation) and in cell-cycle regulation; Lys-29-linked is involved in lysosomal degradation; Lys-33-linked is involved in kinase modification; Lys-48-linked is involved in protein degradation via the proteasome; Lys-63-linked is involved in endocytosis, DNA-damage responses as well as in signaling processes leading to activation of the transcription factor NF-kappa-B. Linear polymer chains formed via attachment by the initiator Met lead to cell signaling. Ubiquitin is usually conjugated to Lys residues of target proteins, however, in rare cases, conjugation to Cys or Ser residues has been observed. When polyubiquitin is free (unanchored-polyubiquitin), it also has distinct roles, such as in activation of protein kinases, and in signaling.<ref>PMID:16543144</ref> <ref>PMID:19754430</ref> |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 21: |
Line 21: |
| </div> | | </div> |
| <div class="pdbe-citations 3prm" style="background-color:#fffaf0;"></div> | | <div class="pdbe-citations 3prm" style="background-color:#fffaf0;"></div> |
| + | |
| + | ==See Also== |
| + | *[[3D structures of ubiquitin|3D structures of ubiquitin]] |
| == References == | | == References == |
| <references/> | | <references/> |
Line 26: |
Line 29: |
| </StructureSection> | | </StructureSection> |
| [[Category: Human]] | | [[Category: Human]] |
| + | [[Category: Large Structures]] |
| [[Category: Ubiquitinyl hydrolase 1]] | | [[Category: Ubiquitinyl hydrolase 1]] |
| [[Category: Baker, E A]] | | [[Category: Baker, E A]] |
| Structural highlights
Function
[UBC_HUMAN] Ubiquitin exists either covalently attached to another protein, or free (unanchored). When covalently bound, it is conjugated to target proteins via an isopeptide bond either as a monomer (monoubiquitin), a polymer linked via different Lys residues of the ubiquitin (polyubiquitin chains) or a linear polymer linked via the initiator Met of the ubiquitin (linear polyubiquitin chains). Polyubiquitin chains, when attached to a target protein, have different functions depending on the Lys residue of the ubiquitin that is linked: Lys-6-linked may be involved in DNA repair; Lys-11-linked is involved in ERAD (endoplasmic reticulum-associated degradation) and in cell-cycle regulation; Lys-29-linked is involved in lysosomal degradation; Lys-33-linked is involved in kinase modification; Lys-48-linked is involved in protein degradation via the proteasome; Lys-63-linked is involved in endocytosis, DNA-damage responses as well as in signaling processes leading to activation of the transcription factor NF-kappa-B. Linear polymer chains formed via attachment by the initiator Met lead to cell signaling. Ubiquitin is usually conjugated to Lys residues of target proteins, however, in rare cases, conjugation to Cys or Ser residues has been observed. When polyubiquitin is free (unanchored-polyubiquitin), it also has distinct roles, such as in activation of protein kinases, and in signaling.[1] [2]
Publication Abstract from PubMed
Crimean-Congo hemorrhagic fever (CCHF) virus is a tick borne ssRNA (-) nairovirus that produces fever, prostration, and severe hemorrhages in humans. With fatality rates for CCHF ranging up to 70% based on several factors, CCHF is considered a dangerous emerging disease. Originally identified in the former U.S.S.R. and the Congo, CCHF has rapidly spread across large sections of Europe, Asia, and Africa. Recent reports have identified a viral homologue of the ovarian tumor protease superfamily (vOTU) within its L-protein. This protease has subsequently been implicated in down-regulation of the interferon type 1 immune response through cleavage of post-translational modifying proteins ubiquitin (Ub) and Ub-like interferon-simulated gene 15 (ISG15). Additionally, homologues of vOTU have been suggested to perform similar roles in the ssRNA (+) Arteriviruses. By utilizing X-ray crystallographic techniques, the structure of vOTU covalently bound to ubiquitin propylamine, a suicide substrate of the enzyme, was elucidated to 1.7 A revealing unique structural elements that define this new subclass of the OTU superfamily. In additions, kinetic studies were carried out with aminomethylcoumarin (AMC) conjugates of monomeric Ub, ISG15, and Neural precursor cell expressed, developmentally down-regulated 8 (NEDD8) substrates in order to provide quantitative insight into vOTU's preference of Ub and Ub-like substrates.
Structural analysis of a viral ovarian tumor domain protease from the Crimean-Congo Hemorrhagic Fever virus in complex with covalently bonded ubiquitin.,Capodagli GC, McKercher MA, Baker EA, Masters EM, Brunzelle JS Dr, Pegan SD Dr J Virol. 2011 Jan 12. PMID:21228232[3]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Huang F, Kirkpatrick D, Jiang X, Gygi S, Sorkin A. Differential regulation of EGF receptor internalization and degradation by multiubiquitination within the kinase domain. Mol Cell. 2006 Mar 17;21(6):737-48. PMID:16543144 doi:S1097-2765(06)00120-1
- ↑ Komander D. The emerging complexity of protein ubiquitination. Biochem Soc Trans. 2009 Oct;37(Pt 5):937-53. doi: 10.1042/BST0370937. PMID:19754430 doi:10.1042/BST0370937
- ↑ Capodagli GC, McKercher MA, Baker EA, Masters EM, Brunzelle JS Dr, Pegan SD Dr. Structural analysis of a viral ovarian tumor domain protease from the Crimean-Congo Hemorrhagic Fever virus in complex with covalently bonded ubiquitin. J Virol. 2011 Jan 12. PMID:21228232 doi:10.1128/JVI.02496-10
|