|  |   | 
		| Line 1: | Line 1: | 
|  |  |  |  | 
|  | ==Crystal structure of fosfomycin resistance protein FosA3== |  | ==Crystal structure of fosfomycin resistance protein FosA3== | 
| - | <StructureSection load='5vb0' size='340' side='right' caption='[[5vb0]], [[Resolution|resolution]] 2.69Å' scene=''> | + | <StructureSection load='5vb0' size='340' side='right'caption='[[5vb0]], [[Resolution|resolution]] 2.69Å' scene=''> | 
|  | == Structural highlights == |  | == Structural highlights == | 
| - | <table><tr><td colspan='2'>[[5vb0]] is a 8 chain structure with sequence from [http://en.wikipedia.org/wiki/"bacillus_coli"_migula_1895 "bacillus coli" migula 1895]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5VB0 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5VB0 FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[5vb0]] is a 8 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5VB0 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=5VB0 FirstGlance]. <br> | 
| - | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=MN:MANGANESE+(II)+ION'>MN</scene>,<scene name='pdbligand=NI:NICKEL+(II)+ION'>NI</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.689Å</td></tr> | 
| - | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">fosA3, BJJ90_27535, BJJ90_28665, BK248_24890, BK251_28530, BK259_26930, BK292_28610, BK334_27385, BK337_26185, BK373_27910, BK375_28485, BK383_28445, BK400_25020, pCTXM123_C0996_13, pEC012_00045, pHN7A8_014, pHNFP460_053 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=562 "Bacillus coli" Migula 1895])</td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=MN:MANGANESE+(II)+ION'>MN</scene>, <scene name='pdbligand=NI:NICKEL+(II)+ION'>NI</scene></td></tr> | 
| - | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5vb0 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5vb0 OCA], [http://pdbe.org/5vb0 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5vb0 RCSB], [http://www.ebi.ac.uk/pdbsum/5vb0 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5vb0 ProSAT]</span></td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=5vb0 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5vb0 OCA], [https://pdbe.org/5vb0 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=5vb0 RCSB], [https://www.ebi.ac.uk/pdbsum/5vb0 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=5vb0 ProSAT]</span></td></tr> | 
|  | </table> |  | </table> | 
|  | + | == Function == | 
|  | + | [https://www.uniprot.org/uniprot/D7UQM0_ECOLX D7UQM0_ECOLX]  | 
|  | <div style="background-color:#fffaf0;"> |  | <div style="background-color:#fffaf0;"> | 
|  | == Publication Abstract from PubMed == |  | == Publication Abstract from PubMed == | 
| Line 21: | Line 23: | 
|  | __TOC__ |  | __TOC__ | 
|  | </StructureSection> |  | </StructureSection> | 
| - | [[Category: Bacillus colimigula 1895]] | + | [[Category: Escherichia coli]] | 
| - | [[Category: Guenther, S]] | + | [[Category: Large Structures]] | 
| - | [[Category: Klontz, E]] | + | [[Category: Guenther S]] | 
| - | [[Category: Silverstein, Z]] | + | [[Category: Klontz E]] | 
| - | [[Category: Sundberg, E]] | + | [[Category: Silverstein Z]] | 
| - | [[Category: Fosa]]
 | + | [[Category: Sundberg E]] | 
| - | [[Category: Fosa3]]
 | + |  | 
| - | [[Category: Fosfomycin]]
 | + |  | 
| - | [[Category: Glutathione transferase]]
 | + |  | 
| - | [[Category: Transferase]]
 | + |  | 
|  |   Structural highlights   Function D7UQM0_ECOLX 
 
  Publication Abstract from PubMed Fosfomycin exhibits broad-spectrum antibacterial activity, and is being re-evaluated for the treatment of extensively drug-resistant pathogens. Its activity in Gram-negatives, however, can be compromised by expression of FosA, a metal-dependent transferase that catalyzes the conjugation of glutathione to fosfomycin, rendering the antibiotic inactive. In this study, we solved the crystal structures of two of the most clinically relevant FosA enzymes: plasmid-encoded FosA3 from Escherichia coli and chromosomally-encoded FosA from Klebsiella pneumoniae (FosAKP). The structure, molecular dynamics, catalytic activity, and fosfomycin resistance of FosA3 and FosAKP were also compared to FosA from Pseudomonas aeruginosa (FosAPA), for which prior crystal structures exist. Escherichia coli TOP10 transformants expressing FosA3 and FosAKP conferred significantly greater fosfomycin resistance (MIC, >1,024 mug/ml) compared to FosAPA (MIC, 16 mug/ml), which could be explained in part by the higher catalytic efficiencies of the FosA3 and FosAKP enzymes. Interestingly, these differences in enzyme activity could not be attributed to structural differences at their active sites. Instead, molecular dynamics simulations and hydrogen-deuterium exchange experiments of FosAKP revealed dynamic interconnectivity between its active sites and a loop structure that extends from the active site of each monomer and traverses the dimer interface. This "dimer-interface" loop is longer and more extended in FosAKP and FosA3 compared to FosAPA, and kinetic analyses of FosAKP and FosAPA loop-swapped chimeric enzymes highlighted its importance in FosA activity. Collectively, these data yield novel insights into fosfomycin resistance that could be leveraged to develop new strategies to inhibit FosA and potentiate fosfomycin activity.
 Structure and dynamics of FosA-mediated fosfomycin resistance in Klebsiella pneumoniae and Escherichia coli.,Klontz EH, Tomich AD, Gunther S, Lemkul JA, Deredge D, Silverstein Z, Shaw JF, McElheny C, Doi Y, Wintrode P, MacKerell AD Jr, Sluis-Cremer N, Sundberg EJ Antimicrob Agents Chemother. 2017 Sep 5. pii: AAC.01572-17. doi:, 10.1128/AAC.01572-17. PMID:28874374[1]
 From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
   References ↑ Klontz EH, Tomich AD, Gunther S, Lemkul JA, Deredge D, Silverstein Z, Shaw JF, McElheny C, Doi Y, Wintrode P, MacKerell AD Jr, Sluis-Cremer N, Sundberg EJ. Structure and dynamics of FosA-mediated fosfomycin resistance in Klebsiella pneumoniae and Escherichia coli. Antimicrob Agents Chemother. 2017 Sep 5. pii: AAC.01572-17. doi:, 10.1128/AAC.01572-17. PMID:28874374 doi:http://dx.doi.org/10.1128/AAC.01572-17
 
 |