|
|
Line 1: |
Line 1: |
| | | |
| ==XylFII molecule== | | ==XylFII molecule== |
- | <StructureSection load='5xss' size='340' side='right' caption='[[5xss]], [[Resolution|resolution]] 2.09Å' scene=''> | + | <StructureSection load='5xss' size='340' side='right'caption='[[5xss]], [[Resolution|resolution]] 2.09Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[5xss]] is a 4 chain structure with sequence from [http://en.wikipedia.org/wiki/Clob8 Clob8]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5XSS OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5XSS FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[5xss]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Clostridium_beijerinckii_NCIMB_8052 Clostridium beijerinckii NCIMB 8052]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5XSS OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=5XSS FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=XYP:BETA-D-XYLOPYRANOSE'>XYP</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.093Å</td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">Cbei_2377 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=290402 CLOB8])</td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=XYP:BETA-D-XYLOPYRANOSE'>XYP</scene></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5xss FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5xss OCA], [http://pdbe.org/5xss PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5xss RCSB], [http://www.ebi.ac.uk/pdbsum/5xss PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5xss ProSAT]</span></td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=5xss FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5xss OCA], [https://pdbe.org/5xss PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=5xss RCSB], [https://www.ebi.ac.uk/pdbsum/5xss PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=5xss ProSAT]</span></td></tr> |
| </table> | | </table> |
- | <div style="background-color:#fffaf0;">
| + | == Function == |
- | == Publication Abstract from PubMed == | + | [https://www.uniprot.org/uniprot/A6LW07_CLOB8 A6LW07_CLOB8] |
- | d-xylose, the main building block of plant biomass, is a pentose sugar that can be used by bacteria as a carbon source for bio-based fuel and chemical production through fermentation. In bacteria, the first step for d-xylose metabolism is signal perception at the membrane. We previously identified a three-component system in Firmicutes bacteria comprising a membrane-associated sensor protein (XylFII), a transmembrane histidine kinase (LytS) for periplasmic d-xylose sensing, and a cytoplasmic response regulator (YesN) that activates the transcription of the target ABC transporter xylFGH genes to promote the uptake of d-xylose. The molecular mechanism underlying signal perception and integration of these processes remains elusive, however. Here we purified the N-terminal periplasmic domain of LytS (LytSN) in a complex with XylFII and determined the conformational structures of the complex in its d-xylose-free and d-xylose-bound forms. LytSN contains a four-helix bundle, and XylFII contains two Rossmann fold-like globular domains with a xylose-binding cleft between them. In the absence of d-xylose, LytSN and XylFII formed a heterodimer. Specific binding of d-xylose to the cleft of XylFII induced a large conformational change that closed the cleft and brought the globular domains closer together. This conformational change led to the formation of an active XylFII-LytSN heterotetramer. Mutations at the d-xylose binding site and the heterotetramer interface diminished heterotetramer formation and impaired the d-xylose-sensing function of XylFII-LytS. Based on these data, we propose a working model of XylFII-LytS that provides a molecular basis for d-xylose utilization and metabolic modification in bacteria.
| + | |
- | | + | |
- | Molecular mechanism of environmental d-xylose perception by a XylFII-LytS complex in bacteria.,Li J, Wang C, Yang G, Sun Z, Guo H, Shao K, Gu Y, Jiang W, Zhang P Proc Natl Acad Sci U S A. 2017 Aug 1;114(31):8235-8240. doi:, 10.1073/pnas.1620183114. Epub 2017 Jul 17. PMID:28716923<ref>PMID:28716923</ref>
| + | |
- | | + | |
- | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br>
| + | |
- | </div>
| + | |
- | <div class="pdbe-citations 5xss" style="background-color:#fffaf0;"></div>
| + | |
- | == References ==
| + | |
- | <references/>
| + | |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Clob8]] | + | [[Category: Clostridium beijerinckii NCIMB 8052]] |
- | [[Category: Li, J X]] | + | [[Category: Large Structures]] |
- | [[Category: Wang, C Y]] | + | [[Category: Li JX]] |
- | [[Category: Zhang, P]] | + | [[Category: Wang CY]] |
- | [[Category: D-xylose uptake]] | + | [[Category: Zhang P]] |
- | [[Category: Histidine kinase]]
| + | |
- | [[Category: Signal transmission across the membrane]]
| + | |
- | [[Category: Sugar binding protein]]
| + | |
- | [[Category: Two component system]]
| + | |