|
|
Line 1: |
Line 1: |
| | | |
| ==Crystal structure of GDNF-GFRalpha1 complex== | | ==Crystal structure of GDNF-GFRalpha1 complex== |
- | <StructureSection load='3fub' size='340' side='right' caption='[[3fub]], [[Resolution|resolution]] 2.35Å' scene=''> | + | <StructureSection load='3fub' size='340' side='right'caption='[[3fub]], [[Resolution|resolution]] 2.35Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[3fub]] is a 4 chain structure with sequence from [http://en.wikipedia.org/wiki/Human Human] and [http://en.wikipedia.org/wiki/Rattus_norvegicus Rattus norvegicus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3FUB OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3FUB FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[3fub]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Human Human] and [https://en.wikipedia.org/wiki/Rattus_norvegicus Rattus norvegicus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3FUB OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3FUB FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=EDO:1,2-ETHANEDIOL'>EDO</scene>, <scene name='pdbligand=NAG:N-ACETYL-D-GLUCOSAMINE'>NAG</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> | + | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=EDO:1,2-ETHANEDIOL'>EDO</scene>, <scene name='pdbligand=NAG:N-ACETYL-D-GLUCOSAMINE'>NAG</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[2v5e|2v5e]], [[2gh0|2gh0]]</td></tr> | + | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[2v5e|2v5e]], [[2gh0|2gh0]]</div></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">GDNF ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr> | + | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">GDNF ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3fub FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3fub OCA], [http://pdbe.org/3fub PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=3fub RCSB], [http://www.ebi.ac.uk/pdbsum/3fub PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=3fub ProSAT]</span></td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3fub FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3fub OCA], [https://pdbe.org/3fub PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3fub RCSB], [https://www.ebi.ac.uk/pdbsum/3fub PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3fub ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Disease == | | == Disease == |
- | [[http://www.uniprot.org/uniprot/GDNF_HUMAN GDNF_HUMAN]] Defects in GDNF may be a cause of Hirschsprung disease type 3 (HSCR3) [MIM:[http://omim.org/entry/613711 613711]]. In association with mutations of RET gene, defects in GDNF may be involved in Hirschsprung disease. This genetic disorder of neural crest development is characterized by the absence of intramural ganglion cells in the hindgut, often resulting in intestinal obstruction.<ref>PMID:8968758</ref> <ref>PMID:8896568</ref> <ref>PMID:8896569</ref> <ref>PMID:10917288</ref> Defects in GDNF are a cause of congenital central hypoventilation syndrome (CCHS) [MIM:[http://omim.org/entry/209880 209880]]; also known as congenital failure of autonomic control or Ondine curse. CCHS is a rare disorder characterized by abnormal control of respiration in the absence of neuromuscular or lung disease, or an identifiable brain stem lesion. A deficiency in autonomic control of respiration results in inadequate or negligible ventilatory and arousal responses to hypercapnia and hypoxemia.<ref>PMID:9497256</ref> | + | [[https://www.uniprot.org/uniprot/GDNF_HUMAN GDNF_HUMAN]] Defects in GDNF may be a cause of Hirschsprung disease type 3 (HSCR3) [MIM:[https://omim.org/entry/613711 613711]]. In association with mutations of RET gene, defects in GDNF may be involved in Hirschsprung disease. This genetic disorder of neural crest development is characterized by the absence of intramural ganglion cells in the hindgut, often resulting in intestinal obstruction.<ref>PMID:8968758</ref> <ref>PMID:8896568</ref> <ref>PMID:8896569</ref> <ref>PMID:10917288</ref> Defects in GDNF are a cause of congenital central hypoventilation syndrome (CCHS) [MIM:[https://omim.org/entry/209880 209880]]; also known as congenital failure of autonomic control or Ondine curse. CCHS is a rare disorder characterized by abnormal control of respiration in the absence of neuromuscular or lung disease, or an identifiable brain stem lesion. A deficiency in autonomic control of respiration results in inadequate or negligible ventilatory and arousal responses to hypercapnia and hypoxemia.<ref>PMID:9497256</ref> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/GFRA1_RAT GFRA1_RAT]] Receptor for GDNF. Mediates the GDNF-induced autophosphorylation and activation of the RET receptor. [[http://www.uniprot.org/uniprot/GDNF_HUMAN GDNF_HUMAN]] Neurotrophic factor that enhances survival and morphological differentiation of dopaminergic neurons and increases their high-affinity dopamine uptake.<ref>PMID:8493557</ref> | + | [[https://www.uniprot.org/uniprot/GFRA1_RAT GFRA1_RAT]] Receptor for GDNF. Mediates the GDNF-induced autophosphorylation and activation of the RET receptor. [[https://www.uniprot.org/uniprot/GDNF_HUMAN GDNF_HUMAN]] Neurotrophic factor that enhances survival and morphological differentiation of dopaminergic neurons and increases their high-affinity dopamine uptake.<ref>PMID:8493557</ref> |
| == Evolutionary Conservation == | | == Evolutionary Conservation == |
| [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
Line 37: |
Line 37: |
| </StructureSection> | | </StructureSection> |
| [[Category: Human]] | | [[Category: Human]] |
| + | [[Category: Large Structures]] |
| [[Category: Rattus norvegicus]] | | [[Category: Rattus norvegicus]] |
| [[Category: Goldman, A]] | | [[Category: Goldman, A]] |
| Structural highlights
Disease
[GDNF_HUMAN] Defects in GDNF may be a cause of Hirschsprung disease type 3 (HSCR3) [MIM:613711]. In association with mutations of RET gene, defects in GDNF may be involved in Hirschsprung disease. This genetic disorder of neural crest development is characterized by the absence of intramural ganglion cells in the hindgut, often resulting in intestinal obstruction.[1] [2] [3] [4] Defects in GDNF are a cause of congenital central hypoventilation syndrome (CCHS) [MIM:209880]; also known as congenital failure of autonomic control or Ondine curse. CCHS is a rare disorder characterized by abnormal control of respiration in the absence of neuromuscular or lung disease, or an identifiable brain stem lesion. A deficiency in autonomic control of respiration results in inadequate or negligible ventilatory and arousal responses to hypercapnia and hypoxemia.[5]
Function
[GFRA1_RAT] Receptor for GDNF. Mediates the GDNF-induced autophosphorylation and activation of the RET receptor. [GDNF_HUMAN] Neurotrophic factor that enhances survival and morphological differentiation of dopaminergic neurons and increases their high-affinity dopamine uptake.[6]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
Glial cell line-derived neurotrophic factor (GDNF) activates the receptor tyrosine kinase RET by binding to the GDNF-family receptor alpha1 (GFRalpha1) and forming the GDNF(2)-GFRalpha1(2)-RET(2) heterohexamer complex. A previous crystal structure of the GDNF(2)-GFRalpha1(2) complex (PDB code 2v5e) suggested that differences in signalling in GDNF-family ligand (GFL) complexes might arise from differences in the bend angle between the two monomers in the GFL homodimer. Here, a 2.35 A resolution structure of the GDNF(2)-GFRalpha1(2) complex crystallized with new cell dimensions is reported. The structure was refined to a final R factor of 22.5% (R(free) = 28%). The structures of both biological tetrameric complexes in the asymmetric unit are very similar to 2v5e and different from the artemin-GFRalpha3 structure, even though there is a small change in the structure of the GDNF. By comparison of all known GDNF and artemin structures, it is concluded that GDNF is more bent and more flexible than artemin and that this may be related to RET signalling. Comparisons also suggest that the differences between artemin and GDNF arise from the increased curvature of the artemin ;fingers', which both increases the buried surface area in the monomer-monomer interface and changes the intermonomer bend angle. From sequence comparison, it is suggested that neuturin (the second GFL) adopts an artemin-like conformation, while persephin has a different conformation to the other three.
Comparison of GFL-GFRalpha complexes: further evidence relating GFL bend angle to RET signalling.,Parkash V, Goldman A Acta Crystallogr Sect F Struct Biol Cryst Commun. 2009 Jun 1;65(Pt, 6):551-8. Epub 2009 May 23. PMID:19478429[7]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Ivanchuk SM, Myers SM, Eng C, Mulligan LM. De novo mutation of GDNF, ligand for the RET/GDNFR-alpha receptor complex, in Hirschsprung disease. Hum Mol Genet. 1996 Dec;5(12):2023-6. PMID:8968758
- ↑ Angrist M, Bolk S, Halushka M, Lapchak PA, Chakravarti A. Germline mutations in glial cell line-derived neurotrophic factor (GDNF) and RET in a Hirschsprung disease patient. Nat Genet. 1996 Nov;14(3):341-4. PMID:8896568 doi:10.1038/ng1196-341
- ↑ Salomon R, Attie T, Pelet A, Bidaud C, Eng C, Amiel J, Sarnacki S, Goulet O, Ricour C, Nihoul-Fekete C, Munnich A, Lyonnet S. Germline mutations of the RET ligand GDNF are not sufficient to cause Hirschsprung disease. Nat Genet. 1996 Nov;14(3):345-7. PMID:8896569 doi:10.1038/ng1196-345
- ↑ Martucciello G, Ceccherini I, Lerone M, Jasonni V. Pathogenesis of Hirschsprung's disease. J Pediatr Surg. 2000 Jul;35(7):1017-25. PMID:10917288
- ↑ Amiel J, Salomon R, Attie T, Pelet A, Trang H, Mokhtari M, Gaultier C, Munnich A, Lyonnet S. Mutations of the RET-GDNF signaling pathway in Ondine's curse. Am J Hum Genet. 1998 Mar;62(3):715-7. PMID:9497256 doi:10.1086/301759
- ↑ Lin LF, Doherty DH, Lile JD, Bektesh S, Collins F. GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science. 1993 May 21;260(5111):1130-2. PMID:8493557
- ↑ Parkash V, Goldman A. Comparison of GFL-GFRalpha complexes: further evidence relating GFL bend angle to RET signalling. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2009 Jun 1;65(Pt, 6):551-8. Epub 2009 May 23. PMID:19478429 doi:10.1107/S1744309109017722
|