6cgi
From Proteopedia
(Difference between revisions)
m (Protected "6cgi" [edit=sysop:move=sysop]) |
|||
Line 1: | Line 1: | ||
==Structure of Salmonella Effector SseK3== | ==Structure of Salmonella Effector SseK3== | ||
- | <StructureSection load='6cgi' size='340' side='right' caption='[[6cgi]], [[Resolution|resolution]] 2.30Å' scene=''> | + | <StructureSection load='6cgi' size='340' side='right'caption='[[6cgi]], [[Resolution|resolution]] 2.30Å' scene=''> |
== Structural highlights == | == Structural highlights == | ||
- | <table><tr><td colspan='2'>[[6cgi]] is a 4 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6CGI OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6CGI FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[6cgi]] is a 4 chain structure with sequence from [http://en.wikipedia.org/wiki/Salts Salts]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6CGI OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6CGI FirstGlance]. <br> |
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=UDP:URIDINE-5-DIPHOSPHATE'>UDP</scene></td></tr> | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=UDP:URIDINE-5-DIPHOSPHATE'>UDP</scene></td></tr> | ||
+ | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">sseK3, SL1344_1928 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=216597 SALTS])</td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6cgi FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6cgi OCA], [http://pdbe.org/6cgi PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6cgi RCSB], [http://www.ebi.ac.uk/pdbsum/6cgi PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6cgi ProSAT]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6cgi FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6cgi OCA], [http://pdbe.org/6cgi PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6cgi RCSB], [http://www.ebi.ac.uk/pdbsum/6cgi PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6cgi ProSAT]</span></td></tr> | ||
</table> | </table> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | Strains of Salmonella utilize two distinct type three secretion systems to deliver effector proteins directly into host cells. The Salmonella effectors SseK1 and SseK3 are arginine glycosyltransferases that modify mammalian death domain containing proteins with N-acetyl glucosamine (GlcNAc) when overexpressed ectopically or as recombinant protein fusions. Here, we combined Arg-GlcNAc glycopeptide immunoprecipitation and mass spectrometry to identify host proteins GlcNAcylated by endogenous levels of SseK1 and SseK3 during Salmonella infection. We observed that SseK1 modified the mammalian signaling protein TRADD, but not FADD as previously reported. Overexpression of SseK1 greatly broadened substrate specificity, whereas ectopic co-expression of SseK1 and TRADD increased the range of modified arginine residues within the death domain of TRADD. In contrast, endogenous levels of SseK3 resulted in modification of the death domains of receptors of the mammalian TNF superfamily, TNFR1 and TRAILR, at residues Arg(376) and Arg(293) respectively. Structural studies on SseK3 showed that the enzyme displays a classic GT-A glycosyltransferase fold and binds UDP-GlcNAc in a narrow and deep cleft with the GlcNAc facing the surface. Together our data suggest that salmonellae carrying sseK1 and sseK3 employ the glycosyltransferase effectors to antagonise different components of death receptor signaling. | ||
+ | |||
+ | Salmonella Effectors SseK1 and SseK3 Target Death Domain Proteins in the TNF and TRAIL Signaling Pathways.,Newson JPM, Scott NE, Yeuk Wah Chung I, Wong Fok Lung T, Giogha C, Gan J, Wang N, Strugnell RA, Brown NF, Cygler M, Pearson JS, Hartland EL Mol Cell Proteomics. 2019 Jun;18(6):1138-1156. doi: 10.1074/mcp.RA118.001093., Epub 2019 Mar 22. PMID:30902834<ref>PMID:30902834</ref> | ||
+ | |||
+ | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
+ | </div> | ||
+ | <div class="pdbe-citations 6cgi" style="background-color:#fffaf0;"></div> | ||
+ | == References == | ||
+ | <references/> | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
+ | [[Category: Large Structures]] | ||
+ | [[Category: Salts]] | ||
[[Category: Chung, I Y.W]] | [[Category: Chung, I Y.W]] | ||
[[Category: Cygler, M]] | [[Category: Cygler, M]] |
Revision as of 07:20, 26 June 2019
Structure of Salmonella Effector SseK3
|