|
|
Line 1: |
Line 1: |
| | | |
| ==Anbu from Hyphomicrobium sp. strain MC1 - SG: R32== | | ==Anbu from Hyphomicrobium sp. strain MC1 - SG: R32== |
- | <StructureSection load='5nyp' size='340' side='right' caption='[[5nyp]], [[Resolution|resolution]] 1.90Å' scene=''> | + | <StructureSection load='5nyp' size='340' side='right'caption='[[5nyp]], [[Resolution|resolution]] 1.90Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[5nyp]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Hypsm Hypsm]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5NYP OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5NYP FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[5nyp]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Hyphomicrobium_sp._MC1 Hyphomicrobium sp. MC1]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5NYP OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=5NYP FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=NA:SODIUM+ION'>NA</scene>, <scene name='pdbligand=PO4:PHOSPHATE+ION'>PO4</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.9Å</td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[5nyf|5nyf]]</td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=NA:SODIUM+ION'>NA</scene>, <scene name='pdbligand=PO4:PHOSPHATE+ION'>PO4</scene></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">HYPMC_4374 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=717785 HYPSM])</td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=5nyp FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5nyp OCA], [https://pdbe.org/5nyp PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=5nyp RCSB], [https://www.ebi.ac.uk/pdbsum/5nyp PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=5nyp ProSAT]</span></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5nyp FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5nyp OCA], [http://pdbe.org/5nyp PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5nyp RCSB], [http://www.ebi.ac.uk/pdbsum/5nyp PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5nyp ProSAT]</span></td></tr> | + | |
| </table> | | </table> |
| + | == Function == |
| + | [https://www.uniprot.org/uniprot/F8JB59_HYPSM F8JB59_HYPSM] |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 22: |
Line 23: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Hypsm]] | + | [[Category: Hyphomicrobium sp. MC1]] |
- | [[Category: Groll, M]] | + | [[Category: Large Structures]] |
- | [[Category: Vielberg, M T]] | + | [[Category: Groll M]] |
- | [[Category: Evolution]] | + | [[Category: Vielberg M-T]] |
- | [[Category: Hydrolase]]
| + | |
- | [[Category: Ntn-hydrolase-fold]]
| + | |
- | [[Category: Proteasome]]
| + | |
| Structural highlights
Function
F8JB59_HYPSM
Publication Abstract from PubMed
The 20S proteasome is a key player in eukaryotic and archaeal protein degradation, but its progenitor in eubacteria is unknown. Recently, the ancestral beta-subunit protein (Anbu) was predicted to be the evolutionary precursor of the proteasome. We crystallized Anbu from Hyphomicrobium sp. strain MC1 in four different space groups and solved the structures by SAD-phasing and Patterson search calculation techniques. Our data reveal that Anbu adopts the classical fold of Ntn-hydrolases, but its oligomeric state differs from that of barrel-shaped proteases. In contrast to their typical architecture, the Anbu protomer is a tightly interacting dimer that can assemble into a helical superstructure. Although Anbu features a catalytic triad of Thr1O(gamma), Asp17O(delta1) and Lys32N(epsilon), it is unable to hydrolyze standard protease substrates. The lack of activity might be caused by the incapacity of Thr1NH2 to function as a Bronsted acid during substrate cleavage due to its missing activation via hydrogen bonding. Altogether, we demonstrate that the topology of the proteasomal fold is conserved in Anbu, but whether it acts as a protease still needs to be clarified.
On the Trails of the Proteasome Fold: Structural and Functional Analysis of the Ancestral beta-Subunit Protein Anbu.,Vielberg MT, Bauer VC, Groll M J Mol Biol. 2018 Feb 2. pii: S0022-2836(18)30007-X. doi:, 10.1016/j.jmb.2018.01.004. PMID:29355501[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Vielberg MT, Bauer VC, Groll M. On the Trails of the Proteasome Fold: Structural and Functional Analysis of the Ancestral beta-Subunit Protein Anbu. J Mol Biol. 2018 Feb 2. pii: S0022-2836(18)30007-X. doi:, 10.1016/j.jmb.2018.01.004. PMID:29355501 doi:http://dx.doi.org/10.1016/j.jmb.2018.01.004
|