Adenylate kinase
From Proteopedia
(Difference between revisions)
Line 11: | Line 11: | ||
The structures of Zn- , Co- and Fe-ADK contain the <scene name='Journal:JBIC:1/Lid_domain/5'>characteristic LID domain (residues 125-163)</scene> and <scene name='Journal:JBIC:1/Core_domain/1'>Core (residues 1-124 and 164-223) domains</scene>, which also include the AMP binding region. The LID domain harbors the <scene name='Journal:JBIC:1/Metal_motif/1'>Cys129-X5-His135-X15-Cys151-X2-Cys154- motif</scene>, which is responsible for metal binding in a tetrahedral fashion. In the absence of any substrate, the LID domain of all holo forms of ADK was present in a fully open conformational state. The Core domain is <scene name='Journal:JBIC:1/Core_connection/3'>connected to the LID by residues 116-123 and 165-173</scene>. This Core domain mainly consists of a <scene name='Journal:JBIC:1/Core_helix/3'>five stranded beta sheet surrounded by 5 helices</scene> that keep the integrity of the tertiary structure of the enzyme. A <scene name='Journal:JBIC:1/Walker/4'>Walker motif</scene> with conserved sequence; <span style="color:#FF0000">G</span>-<span style="color:#FF8040">X</span>-<span style="color:#FFFF00">X</span>-<span style="color:#00FF00">G</span>-<span style="color:#0000FF">X</span>-<span style="color:#FF00FF">G</span>-<span style="color:#00FFFF">K</span> is present in the N-terminal region. The structures presented herein further reinforce the notion that the metal ion is purely structural, contributing to the stability of the LID domain.<ref >DOI 10.1007/s00775-010-0700-8</ref> | The structures of Zn- , Co- and Fe-ADK contain the <scene name='Journal:JBIC:1/Lid_domain/5'>characteristic LID domain (residues 125-163)</scene> and <scene name='Journal:JBIC:1/Core_domain/1'>Core (residues 1-124 and 164-223) domains</scene>, which also include the AMP binding region. The LID domain harbors the <scene name='Journal:JBIC:1/Metal_motif/1'>Cys129-X5-His135-X15-Cys151-X2-Cys154- motif</scene>, which is responsible for metal binding in a tetrahedral fashion. In the absence of any substrate, the LID domain of all holo forms of ADK was present in a fully open conformational state. The Core domain is <scene name='Journal:JBIC:1/Core_connection/3'>connected to the LID by residues 116-123 and 165-173</scene>. This Core domain mainly consists of a <scene name='Journal:JBIC:1/Core_helix/3'>five stranded beta sheet surrounded by 5 helices</scene> that keep the integrity of the tertiary structure of the enzyme. A <scene name='Journal:JBIC:1/Walker/4'>Walker motif</scene> with conserved sequence; <span style="color:#FF0000">G</span>-<span style="color:#FF8040">X</span>-<span style="color:#FFFF00">X</span>-<span style="color:#00FF00">G</span>-<span style="color:#0000FF">X</span>-<span style="color:#FF00FF">G</span>-<span style="color:#00FFFF">K</span> is present in the N-terminal region. The structures presented herein further reinforce the notion that the metal ion is purely structural, contributing to the stability of the LID domain.<ref >DOI 10.1007/s00775-010-0700-8</ref> | ||
+ | |||
+ | == 3D Structures of Adenylate kinase == | ||
+ | [[Adenylate kinase 3D structures]] | ||
</StructureSection> | </StructureSection> |
Revision as of 11:22, 28 February 2019
|
3D Structures of Adenylate kinase
Updated on 28-February-2019
References
- ↑ Mukhopadhyay A, Kladova AV, Bursakov SA, Gavel OY, Calvete JJ, Shnyrov VL, Moura I, Moura JJ, Romao MJ, Trincao J. Crystal structure of the zinc-, cobalt-, and iron-containing adenylate kinase from Desulfovibrio gigas: a novel metal-containing adenylate kinase from Gram-negative bacteria. J Biol Inorg Chem. 2010 Sep 7. PMID:20821240 doi:10.1007/s00775-010-0700-8