User:Neel Bhagat/Sandbox 1

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 45: Line 45:
=== Neurological Disorders ===
=== Neurological Disorders ===
Along with cancer, SRp20 mutations have been linked to [https://en.wikipedia.org/wiki/Alzheimer%27s_disease Alzheimers], a neurodegenerative disorder. SRp20 is involved in AS of a wide array of RNAs, including that of the [https://en.wikipedia.org/wiki/Tropomyosin_receptor_kinase_B TRKB] gene to generate TrkB-Shc transcripts that are involved in generation of the disorder. SRp20 also promotes exclusion of exon 10 in the TAU gene, a gene important in establishing microtubules in axons or transport processes.Underexpression of SRp20 results in dysfunction of the TAU gene, less microtubule functionality, and the brain deterioration characteristic of Alzheimers (10, 7).
Along with cancer, SRp20 mutations have been linked to [https://en.wikipedia.org/wiki/Alzheimer%27s_disease Alzheimers], a neurodegenerative disorder. SRp20 is involved in AS of a wide array of RNAs, including that of the [https://en.wikipedia.org/wiki/Tropomyosin_receptor_kinase_B TRKB] gene to generate TrkB-Shc transcripts that are involved in generation of the disorder. SRp20 also promotes exclusion of exon 10 in the TAU gene, a gene important in establishing microtubules in axons or transport processes.Underexpression of SRp20 results in dysfunction of the TAU gene, less microtubule functionality, and the brain deterioration characteristic of Alzheimers (10, 7).
 +
 +
=== Other Genetic Disorders ===
 +
SRp20 and other SR proteins have been shown to prevent [https://en.wikipedia.org/wiki/R-loop R-loops] from forming, 3-stranded nucleic acid structures consisting of RNA and DNA. R-loops have been known to promote mutations, recombination, and chromosome rearrangement. One proposed mechanism for R-loop prevention by SRp20 is that SRp20, being a protein involved in RNA metabolism, is a binding partner of the [https://www.uniprot.org/uniprot/P11387 TOP1] protein. Underexpression of TOP1 also promotes R-loop formation. TOP1 has kinase activity that potentially phosphorylates the SR domain of SRp20, which contributes to its function. Underexpression of TOP1 would lead to loss-of-function of SRp20, which could lead to cancer and Alzheimers as mentioned above, as well as cause R-loops to form. R-loops have been associated with disorders such as [https://www.ndss.org/about-down-syndrome/down-syndrome/ Down Syndrome] (Naro et al. 2015).

Revision as of 01:03, 3 April 2018

Contents

Introduction

Overview

The SRp20 protein is an alternative splicing factor found in homo sapiens as well as many other eukaryotes. It is a relatively small protein with a length of 164 amino acids and a weight of about 19kDa. In fact, it is the smallest member of the SR protein family. The protein contains two domains: a serine-arginine rich (SR) domain and a RNA-recognition domain (RRM).

History

Splicing is one step in the process of RNA maturation that cuts out introns and joins exons together. Both the spliceosome, a complex of snRNAs (U1, U2, etc.), and splicing factors like SRp20 interact with intron consensus sequences in the pre-mRNA to regulate this process. Alternative splicing allows one mRNA molecule to produce numerous proteins that perform different functions in a cell by inclusion and exclusion of RNA sequences. There are two main families of splicing factors: Serine-Arginine rich (SR) proteins and heterogeneous nuclear RiboNucleoProteins (hnRNPs). The SRp20 protein belongs to the SR protein family. All SR proteins are defined by a RNA-binding domain at the N-terminus and a serine-arginine rich domain at the C-terminus (Corbo et al. 2013). The discovery of this family started in the 1900s with the SF2 (SRp30a) protein and has since come to include twelve proteins, all of which act as splicing factors. SRp20 was first discovered in calf thymus when it was separated with several other SR proteins based on their molecular weight (Zhaler 1992). An identical protein, called X16, was discovered in an earlier paper studying different genes that change expression during B-cell development (Ayane 1991). At the time, the protein was assumed to play a role in RNA processing and cellular proliferation, a finding that was later proved to be true (Ayane 1991; Corbo et al. 2013). The SRp20 protein has been shown to play a role in cancer progression and neurological disorders, specifically through alternative splicing. For example, SRp20 has been shown to play a role in alternative splicing of the Tau protein, an integral protein in the progression of Alzheimer’s disease (Corbo 2013). SRp20 has even been found to serve as a splicing factor for its own mRNA, influencing the inclusion of exon 4 (Corbo 2013). Another function of SRp20 is its role in export of mRNA out of the nucleus, notably H2A histone mRNA export (Hargous 2006).

SRp20 bound to RNA ligand and IgG binding domain 1 (PDB entry 2i2y)

Drag the structure with the mouse to rotate

References

Proteopedia Page Contributors and Editors (what is this?)

Neel Bhagat

Personal tools