|
|
Line 1: |
Line 1: |
| | | |
| ==Complex of rice blast (Magnaporthe oryzae) effector protein AVR-PikA with the HMA domain of Pikm-1 from rice (Oryza sativa)== | | ==Complex of rice blast (Magnaporthe oryzae) effector protein AVR-PikA with the HMA domain of Pikm-1 from rice (Oryza sativa)== |
- | <StructureSection load='6fud' size='340' side='right' caption='[[6fud]], [[Resolution|resolution]] 1.30Å' scene=''> | + | <StructureSection load='6fud' size='340' side='right'caption='[[6fud]], [[Resolution|resolution]] 1.30Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[6fud]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Bpi_841383 Bpi 841383] and [http://en.wikipedia.org/wiki/Japanese_rice Japanese rice]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6FUD OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6FUD FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[6fud]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Oryza_sativa_Japonica_Group Oryza sativa Japonica Group] and [https://en.wikipedia.org/wiki/Pyricularia_oryzae Pyricularia oryzae]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6FUD OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6FUD FirstGlance]. <br> |
- | </td></tr><tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[6fu9|6fu9]], [[6fub|6fub]], [[6g10|6g10]], [[6g11|6g11]]</td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.3Å</td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">Pikm1-TS, Pi-km1 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=39947 Japanese rice]), AVR-Pik, AVR-Pikm ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=318829 BPI 841383])</td></tr>
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6fud FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6fud OCA], [https://pdbe.org/6fud PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6fud RCSB], [https://www.ebi.ac.uk/pdbsum/6fud PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6fud ProSAT]</span></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6fud FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6fud OCA], [http://pdbe.org/6fud PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6fud RCSB], [http://www.ebi.ac.uk/pdbsum/6fud PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6fud ProSAT]</span></td></tr> | + | |
| </table> | | </table> |
| + | == Function == |
| + | [https://www.uniprot.org/uniprot/PIKM1_ORYSJ PIKM1_ORYSJ] Disease resistance (R) protein that specifically recognizes the AVR-Pik effector avirulence protein from M.oryzae. Resistance proteins guard the plant against pathogens that contain an appropriate avirulence protein via an indirect interaction with this avirulence protein. That triggers a defense system including the hypersensitive response, which restricts the pathogen growth (PubMed:18940787, PubMed:22805093). Contribution of Pikm-2 is required to recognize the effector avirulence protein AVR-Pik (PubMed:18940787).<ref>PMID:18940787</ref> <ref>PMID:22805093</ref> |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 21: |
Line 22: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Bpi 841383]] | + | [[Category: Large Structures]] |
- | [[Category: Japanese rice]] | + | [[Category: Oryza sativa Japonica Group]] |
- | [[Category: Banfield, M J]] | + | [[Category: Pyricularia oryzae]] |
- | [[Category: Concepcion, J C.De la]] | + | [[Category: Banfield MJ]] |
- | [[Category: Franceschetti, M]] | + | [[Category: De la Concepcion JC]] |
- | [[Category: Antifungal protein]] | + | [[Category: Franceschetti M]] |
- | [[Category: Complex]]
| + | |
- | [[Category: Fungal effector]]
| + | |
- | [[Category: Plant immunity]]
| + | |
- | [[Category: Plant nlr]]
| + | |
| Structural highlights
Function
PIKM1_ORYSJ Disease resistance (R) protein that specifically recognizes the AVR-Pik effector avirulence protein from M.oryzae. Resistance proteins guard the plant against pathogens that contain an appropriate avirulence protein via an indirect interaction with this avirulence protein. That triggers a defense system including the hypersensitive response, which restricts the pathogen growth (PubMed:18940787, PubMed:22805093). Contribution of Pikm-2 is required to recognize the effector avirulence protein AVR-Pik (PubMed:18940787).[1] [2]
Publication Abstract from PubMed
Accelerated adaptive evolution is a hallmark of plant-pathogen interactions. Plant intracellular immune receptors (NLRs) often occur as allelic series with differential pathogen specificities. The determinants of this specificity remain largely unknown. Here, we unravelled the biophysical and structural basis of expanded specificity in the allelic rice NLR Pik, which responds to the effector AVR-Pik from the rice blast pathogen Magnaporthe oryzae. Rice plants expressing the Pikm allele resist infection by blast strains expressing any of three AVR-Pik effector variants, whereas those expressing Pikp only respond to one. Unlike Pikp, the integrated heavy metal-associated (HMA) domain of Pikm binds with high affinity to each of the three recognized effector variants, and variation at binding interfaces between effectors and Pikp-HMA or Pikm-HMA domains encodes specificity. By understanding how co-evolution has shaped the response profile of an allelic NLR, we highlight how natural selection drove the emergence of new receptor specificities. This work has implications for the engineering of NLRs with improved utility in agriculture.
Polymorphic residues in rice NLRs expand binding and response to effectors of the blast pathogen.,De la Concepcion JC, Franceschetti M, Maqbool A, Saitoh H, Terauchi R, Kamoun S, Banfield MJ Nat Plants. 2018 Jul 9. pii: 10.1038/s41477-018-0194-x. doi:, 10.1038/s41477-018-0194-x. PMID:29988155[3]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Ashikawa I, Hayashi N, Yamane H, Kanamori H, Wu J, Matsumoto T, Ono K, Yano M. Two adjacent nucleotide-binding site-leucine-rich repeat class genes are required to confer Pikm-specific rice blast resistance. Genetics. 2008 Dec;180(4):2267-76. PMID:18940787 doi:10.1534/genetics.108.095034
- ↑ Kanzaki H, Yoshida K, Saitoh H, Fujisaki K, Hirabuchi A, Alaux L, Fournier E, Tharreau D, Terauchi R. Arms race co-evolution of Magnaporthe oryzae AVR-Pik and rice Pik genes driven by their physical interactions. Plant J. 2012 Dec;72(6):894-907. PMID:22805093 doi:10.1111/j.1365-313X.2012.05110.x
- ↑ De la Concepcion JC, Franceschetti M, Maqbool A, Saitoh H, Terauchi R, Kamoun S, Banfield MJ. Polymorphic residues in rice NLRs expand binding and response to effectors of the blast pathogen. Nat Plants. 2018 Jul 9. pii: 10.1038/s41477-018-0194-x. doi:, 10.1038/s41477-018-0194-x. PMID:29988155 doi:http://dx.doi.org/10.1038/s41477-018-0194-x
|