|
|
| Line 1: |
Line 1: |
| | | | |
| | ==NMR structure of unmodified_ASL_Tyr== | | ==NMR structure of unmodified_ASL_Tyr== |
| - | <StructureSection load='2lac' size='340' side='right' caption='[[2lac]], [[NMR_Ensembles_of_Models | 9 NMR models]]' scene=''> | + | <StructureSection load='2lac' size='340' side='right'caption='[[2lac]], [[NMR_Ensembles_of_Models | 9 NMR models]]' scene=''> |
| | == Structural highlights == | | == Structural highlights == |
| - | <table><tr><td colspan='2'>[[2lac]] is a 1 chain structure. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2LAC OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2LAC FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[2lac]] is a 1 chain structure. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2LAC OCA]. For a <b>guided tour on the structure components</b> use [http://proteopedia.org/fgij/fg.htm?mol=2LAC FirstGlance]. <br> |
| | </td></tr><tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[2la9|2la9]], [[2lbq|2lbq]], [[2lbr|2lbr]]</td></tr> | | </td></tr><tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[2la9|2la9]], [[2lbq|2lbq]], [[2lbr|2lbr]]</td></tr> |
| - | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2lac FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2lac OCA], [http://pdbe.org/2lac PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=2lac RCSB], [http://www.ebi.ac.uk/pdbsum/2lac PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=2lac ProSAT]</span></td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://proteopedia.org/fgij/fg.htm?mol=2lac FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2lac OCA], [http://pdbe.org/2lac PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=2lac RCSB], [http://www.ebi.ac.uk/pdbsum/2lac PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=2lac ProSAT]</span></td></tr> |
| | </table> | | </table> |
| | <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| Line 20: |
Line 20: |
| | __TOC__ | | __TOC__ |
| | </StructureSection> | | </StructureSection> |
| | + | [[Category: Large Structures]] |
| | [[Category: Denmon, A P]] | | [[Category: Denmon, A P]] |
| | [[Category: Nikonowicz, E P]] | | [[Category: Nikonowicz, E P]] |
| Structural highlights
Publication Abstract from PubMed
tRNA molecules contain 93 chemically unique nucleotide base modifications that expand the chemical and biophysical diversity of RNA and contribute to the overall fitness of the cell. Nucleotide modifications of tRNA confer fidelity and efficiency to translation and are important in tRNA-dependent RNA-mediated regulatory processes. The three-dimensional structure of the anticodon is crucial to tRNA-mRNA specificity, and the diverse modifications of nucleotide bases in the anticodon region modulate this specificity. We have determined the solution structures and thermodynamic properties of Bacillus subtilis tRNA(Tyr) anticodon arms containing the natural base modifications N(6)-dimethylallyl adenine (i(6)A(37)) and pseudouridine (psi(39)). UV melting and differential scanning calorimetry indicate that the modifications stabilize the stem and may enhance base stacking in the loop. The i(6)A(37) modification disrupts the hydrogen bond network of the unmodified anticodon loop including a C(32)-A(38)(+) base pair and an A(37)-U(33) base-base interaction. Although the i(6)A(37) modification increases the dynamic nature of the loop nucleotides, metal ion coordination reestablishes conformational homogeneity. Interestingly, the i(6)A(37) modification and Mg(2+) are sufficient to promote the U-turn fold of the anticodon loop of Escherichia coli tRNA(Phe), but these elements do not result in this signature feature of the anticodon loop in tRNA(Tyr).
Conformation Effects of Base Modification on the Anticodon Stem-Loop of Bacillus subtilis tRNA(Tyr).,Denmon AP, Wang J, Nikonowicz EP J Mol Biol. 2011 Sep 16;412(2):285-303. Epub 2011 Jul 19. PMID:21782828[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Denmon AP, Wang J, Nikonowicz EP. Conformation Effects of Base Modification on the Anticodon Stem-Loop of Bacillus subtilis tRNA(Tyr). J Mol Biol. 2011 Sep 16;412(2):285-303. Epub 2011 Jul 19. PMID:21782828 doi:10.1016/j.jmb.2011.07.010
|