6g0n

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 3: Line 3:
<StructureSection load='6g0n' size='340' side='right' caption='[[6g0n]], [[Resolution|resolution]] 1.80&Aring;' scene=''>
<StructureSection load='6g0n' size='340' side='right' caption='[[6g0n]], [[Resolution|resolution]] 1.80&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
-
<table><tr><td colspan='2'>[[6g0n]] is a 1 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6G0N OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6G0N FirstGlance]. <br>
+
<table><tr><td colspan='2'>[[6g0n]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Tertt Tertt]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6G0N OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6G0N FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=XYP:BETA-D-XYLOPYRANOSE'>XYP</scene></td></tr>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=XYP:BETA-D-XYLOPYRANOSE'>XYP</scene></td></tr>
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[6g00|6g00]], [[6g09|6g09]], [[6g0b|6g0b]]</td></tr>
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[6g00|6g00]], [[6g09|6g09]], [[6g0b|6g0b]]</td></tr>
 +
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">TERTU_4506 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=377629 TERTT])</td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6g0n FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6g0n OCA], [http://pdbe.org/6g0n PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6g0n RCSB], [http://www.ebi.ac.uk/pdbsum/6g0n PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6g0n ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6g0n FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6g0n OCA], [http://pdbe.org/6g0n PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6g0n RCSB], [http://www.ebi.ac.uk/pdbsum/6g0n PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6g0n ProSAT]</span></td></tr>
</table>
</table>
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
The biological conversion of lignocellulosic matter into high-value chemicals or biofuels is of increasing industrial importance as the sector slowly transitions away from nonrenewable sources. Many industrial processes involve the use of cellulolytic enzyme cocktails - a selection of glycoside hydrolases and, increasingly, polysaccharide oxygenases - to break down recalcitrant plant polysaccharides. ORFs from the genome of Teredinibacter turnerae, a symbiont hosted within the gills of marine shipworms, were identified in order to search for enzymes with desirable traits. Here, a putative T. turnerae glycoside hydrolase from family 8, hereafter referred to as TtGH8, is analysed. The enzyme is shown to be active against beta-1,4-xylan and mixed-linkage (beta-1,3,beta-1,4) marine xylan. Kinetic parameters, obtained using high-performance anion-exchange chromatography with pulsed amperometric detection and 3,5-dinitrosalicyclic acid reducing-sugar assays, show that TtGH8 catalyses the hydrolysis of beta-1,4-xylohexaose with a kcat/Km of 7.5 x 10(7) M(-1) min(-1) but displays maximal activity against mixed-linkage polymeric xylans, hinting at a primary role in the degradation of marine polysaccharides. The three-dimensional structure of TtGH8 was solved in uncomplexed and xylobiose-, xylotriose- and xylohexaose-bound forms at approximately 1.5 A resolution; the latter was consistent with the greater kcat/Km for hexasaccharide substrates. A (2,5)B boat conformation observed in the -1 position of bound xylotriose is consistent with the proposed conformational itinerary for this class of enzyme. This work shows TtGH8 to be effective at the degradation of xylan-based substrates, notably marine xylan, further exemplifying the potential of T. turnerae for effective and diverse biomass degradation.
 +
 +
Structure and function of a glycoside hydrolase family 8 endoxylanase from Teredinibacter turnerae.,Fowler CA, Hemsworth GR, Cuskin F, Hart S, Turkenburg J, Gilbert HJ, Walton PH, Davies GJ Acta Crystallogr D Struct Biol. 2018 Oct 1;74(Pt 10):946-955. doi:, 10.1107/S2059798318009737. Epub 2018 Oct 2. PMID:30289404<ref>PMID:30289404</ref>
 +
 +
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 +
</div>
 +
<div class="pdbe-citations 6g0n" style="background-color:#fffaf0;"></div>
 +
== References ==
 +
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>
 +
[[Category: Tertt]]
[[Category: Davies, G J]]
[[Category: Davies, G J]]
[[Category: Fowler, C A]]
[[Category: Fowler, C A]]

Revision as of 08:40, 17 October 2018

Crystal Structure of a GH8 catalytic mutant xylohexaose complex xylanase from Teredinibacter turnerae

6g0n, resolution 1.80Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools