<table><tr><td colspan='2'>[[6ftx]] is a 13 chain structure with sequence from [http://en.wikipedia.org/wiki/Atcc_18824 Atcc 18824], [http://en.wikipedia.org/wiki/African_clawed_frog African clawed frog], [http://en.wikipedia.org/wiki/Human Human], [http://en.wikipedia.org/wiki/Petma Petma] and [http://en.wikipedia.org/wiki/Silurana_(xenopus)_tropicalis Silurana (xenopus) tropicalis]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6FTX OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6FTX FirstGlance]. <br>
<table><tr><td colspan='2'>[[6ftx]] is a 13 chain structure with sequence from [http://en.wikipedia.org/wiki/Atcc_18824 Atcc 18824], [http://en.wikipedia.org/wiki/African_clawed_frog African clawed frog], [http://en.wikipedia.org/wiki/Human Human], [http://en.wikipedia.org/wiki/Petma Petma] and [http://en.wikipedia.org/wiki/Silurana_(xenopus)_tropicalis Silurana (xenopus) tropicalis]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6FTX OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6FTX FirstGlance]. <br>
Line 21:
Line 21:
==See Also==
==See Also==
+
*[[Histone 3D structures|Histone 3D structures]]
*[[Ubiquitin|Ubiquitin]]
*[[Ubiquitin|Ubiquitin]]
== References ==
== References ==
<references/>
<references/>
__TOC__
__TOC__
-
</StructureSection>
+
</SX>
[[Category: African clawed frog]]
[[Category: African clawed frog]]
[[Category: Atcc 18824]]
[[Category: Atcc 18824]]
[[Category: Human]]
[[Category: Human]]
+
[[Category: Large Structures]]
[[Category: Petma]]
[[Category: Petma]]
[[Category: Hughes, A]]
[[Category: Hughes, A]]
Revision as of 21:17, 6 March 2020
Structure of the chromatin remodelling enzyme Chd1 bound to a ubiquitinylated nucleosome
[H2A1_XENLA] Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. [H4_XENLA] Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. [UBB_HUMAN] Ubiquitin exists either covalently attached to another protein, or free (unanchored). When covalently bound, it is conjugated to target proteins via an isopeptide bond either as a monomer (monoubiquitin), a polymer linked via different Lys residues of the ubiquitin (polyubiquitin chains) or a linear polymer linked via the initiator Met of the ubiquitin (linear polyubiquitin chains). Polyubiquitin chains, when attached to a target protein, have different functions depending on the Lys residue of the ubiquitin that is linked: Lys-6-linked may be involved in DNA repair; Lys-11-linked is involved in ERAD (endoplasmic reticulum-associated degradation) and in cell-cycle regulation; Lys-29-linked is involved in lysosomal degradation; Lys-33-linked is involved in kinase modification; Lys-48-linked is involved in protein degradation via the proteasome; Lys-63-linked is involved in endocytosis, DNA-damage responses as well as in signaling processes leading to activation of the transcription factor NF-kappa-B. Linear polymer chains formed via attachment by the initiator Met lead to cell signaling. Ubiquitin is usually conjugated to Lys residues of target proteins, however, in rare cases, conjugation to Cys or Ser residues has been observed. When polyubiquitin is free (unanchored-polyubiquitin), it also has distinct roles, such as in activation of protein kinases, and in signaling.[1][2] [H3C_XENLA] Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.
Publication Abstract from PubMed
ATP-dependent chromatin remodelling proteins represent a diverse family of proteins that share ATPase domains that are adapted to regulate protein-DNA interactions. Here we present structures of the Saccharomyces cerevisiae Chd1 protein engaged with nucleosomes in the presence of the transition state mimic ADP-beryllium fluoride. The path of DNA strands through the ATPase domains indicates the presence of contacts conserved with single strand translocases and additional contacts with both strands that are unique to Snf2 related proteins. The structure provides connectivity between rearrangement of ATPase lobes to a closed, nucleotide bound state and the sensing of linker DNA. Two turns of linker DNA are prised off the surface of the histone octamer as a result of Chd1 binding, and both the histone H3 tail and ubiquitin conjugated to lysine 120 are re-orientated towards the unravelled DNA. This indicates how changes to nucleosome structure can alter the way in which histone epitopes are presented.
Structure of the chromatin remodelling enzyme Chd1 bound to a ubiquitinylated nucleosome.,Sundaramoorthy R, Hughes AL, El-Mkami H, Norman DG, Ferreira H, Owen-Hughes T Elife. 2018 Aug 6;7. pii: 35720. doi: 10.7554/eLife.35720. PMID:30079888[3]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
↑ Huang F, Kirkpatrick D, Jiang X, Gygi S, Sorkin A. Differential regulation of EGF receptor internalization and degradation by multiubiquitination within the kinase domain. Mol Cell. 2006 Mar 17;21(6):737-48. PMID:16543144 doi:S1097-2765(06)00120-1
↑ Komander D. The emerging complexity of protein ubiquitination. Biochem Soc Trans. 2009 Oct;37(Pt 5):937-53. doi: 10.1042/BST0370937. PMID:19754430 doi:10.1042/BST0370937
↑ Sundaramoorthy R, Hughes AL, El-Mkami H, Norman DG, Ferreira H, Owen-Hughes T. Structure of the chromatin remodelling enzyme Chd1 bound to a ubiquitinylated nucleosome. Elife. 2018 Aug 6;7. pii: 35720. doi: 10.7554/eLife.35720. PMID:30079888 doi:http://dx.doi.org/10.7554/eLife.35720